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Introduction 
A significant amount of literature and 

scientific publications are devoted to network 

planning problems. In particular, the 

formulations of optimization problems on 

network graphs are given in the monograph [1], 

however, unlike the dynamic problems of 

resource allocation considered in this article, they 

are static. The problems studied in this paper 

differ in their formulation from the problems 

given in [1], which considers separable or, as they 

are often called, material and technical resources. 

This article considers another type of resource, 

namely, resources that allow repeated use in 

different jobs at different points in time, for 

example, personnel or equipment. This type of 

resource will be called reentrant; in the literature 

it is often called non-storable or a "capacity" type 

resource. Let us give a brief overview of the 

results for problems of this type. The book [2] 

states that there are no exact algorithms for 

finding the optimal resource allocation in the 

general case, but there are a number of heuristic 

algorithms. The general case is understood as a 

set of works specified by an arbitrary network 

schedule, the presence of several resources of 

known volumes, each work is performed by one 

type of resource, apparently the operations are 

performed with a fixed intensity (i.e., the 

intensity does not change from start to finish). 

Results are given for independent works with 

concave intensity functions. It is noted that in the 

case when one work is performed by several 

types of resources on one, but with a fixed 

distribution of shares of resource use (each work 

has its own structure), results 1 and 2 remain 

valid. It is asserted that if the intensity functions 

are not concave (the general case), then there 

always exists an optimal solution containing no 

more than n intervals of constancy, i.e., the 

intensities do not change on them. The result is 

given for independent works with convex 

intensity functions. For the case of fixed 

intensities and independent works, an 

optimization algorithm is considered, an 

analogue of the simplex method for a specific 

class of problems. 

The article [3, 4] considers the case of projects 

with dependent works (an arbitrary network 

schedule), which are performed with fixed a 

priori specified intensities. The average weighted 

time of completion of all project work is 

considered as a criterion for the schedule 

efficiency. 

The work [5] presents mathematical models 

that allow optimization of the network schedule 

when distributing material or time resources. The 

methods for determining the dependencies 

between the time of execution of network 

schedule works and the volume of resources spent 

on this work are considered, linear and hyperbolic 

dependencies are considered. Further, 

mathematical models are presented that allow 

optimization of the network schedule in time so 

that the resources allocated to the project do not 

exceed the standard indicators. A mathematical 

model for minimizing the resources allocated to 

the project, in conditions of observing time limits, 

is also presented. 

In article [6], the problem of reentrant 

resource allocation during execution of a set of 

interdependent tasks presented in the form of a 

network schedule is considered. A linear 

dependence of the time of task execution on the 

resources used is assumed. An algorithm for 

constructing a solution for tasks with a 

predetermined sequence of events in the network 

schedule of a set of tasks is substantiated. An 

algorithm for reducing a general problem to an 

auxiliary problem with ordered times of events is 

proposed, as well as an algorithm for constructing 

an optimal solution to the original problem. The 

convergence of this algorithm is due to the 

finiteness of iterations at each stage. The overall 

computational complexity of the algorithm can be 

estimated as O(n2), where n is the number of 

nodes in the original network schedule. 

The article [7] considers the issues of 

estimating the parameters of the network project 

management models. The features of 

constructing network models under various 

conditions of network planning are described. 

The influence of model aggregation on the 

accuracy of calendar plans is estimated. 

The work [8] is devoted to similar in 

formulation problems of dynamic resource 

management. It considered a hydrostatic model. 

Based on physical analogies and laws, it was 

shown that the optimal use of resources is 

achieved with a minimum of the functional, 

which expresses the value of potential energy. 

The paper [9] considers the problem of 
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distributing teams of specialists who jointly 

perform certain tasks (consulting services, 

assessment of conformity or non-conformity of 

products, goods or services to the necessary 

requirements, etc.). The team performing the 

work consists of many specialists of different 

types (specialties), the number of which is 

limited. The problem is to develop a work plan 

for the teams, in which the time for completing 

all the work is minimal. The problem is reduced 

to a linear programming problem. Heuristic 

algorithms and special cases of the problem are 

also considered. 

The work [10] considered the problems of 

scheduling theory with non-storable resources 

and algorithms for their solution based on branch 

and bound methods. 

We also note several works by foreign 

authors. The article [11] considers the problems 

of scheduling projects with limited resource and 

material flows (Resource-Constrained Multi-

project Scheduling Problem, RMCPSP). The 

publication [12] provides a comparison of some 

resource allocation algorithms on network 

graphs. The work [13] presents an overview of 

the results on issues of dynamic resource 

allocation on network graphs, and also provides a 

detailed bibliography. 

1. Statement of the problem with 

separable resources 
Let us present the statement of the classical 

problem of optimal resource allocation on a 

network schedule in the deterministic case [1]. 

Let a network schedule with events 𝑧1, . . . , 𝑧𝑛  and 

arcs-jobs 𝑙1, … , 𝑙𝑚, be given, where 𝑧1 is the 

beginning of all jobs, 𝑧𝑛 is their end. Let us also 

assume that the execution times of all jobs are 

functions of resource allocations. In this case, we 

will assume that a set X of resource distributions 

is given, and as soon as a resource distribution 

x∈X is selected, the functions 𝜑𝑗(𝑥) are 

immediately determined, i.e., the execution times 

of jobs 𝑙𝑗, j=1,..., m. We will assume that the 

functions 𝜑𝑗(𝑥), j=1,..., m, are continuous non-

negative functions, and the set X is a compact set 

of the Euclidean space 𝐸(𝑘). 

Let us formulate the problem of finding such 

a resource distribution that the execution time of 

the entire set of works is minimal for a given 

resource distribution. If the resource distribution 

x∈X is chosen, then the minimum execution time 

of the entire set of works will be determined from 

the solution of the following problem (1). 

( )1min ttn
t

− ,                                             (1) 

𝑡𝑛2(𝑗) − 𝑡𝑛1(𝑗)  ≥ 𝜑𝑗(𝑥), 𝑡 = (𝑡1, … , 𝑡𝑛),

𝑗 = 1, … , 𝑚,  
where n1(j) is the number of the vertex that is 

the beginning of the arc j, and n2(j) is the number 

of the vertex that is the end of the arc j. 

If we want to choose such a resource 

distribution that the execution time of works is 

minimal for all resource distributions, then we 

need to solve the problem ( )1minmin ttn
tx

−

under the constraints of problem (1). Combining 

two consecutive minima into one, we finally 

obtain 

( )1
,

min ttn
tx

−                                                              (2) 

𝑡𝑛2(𝑗) − 𝑡𝑛1(𝑗) ≥ 𝜑𝑗(𝑥), 𝑡 = (𝑡1, … , 𝑡𝑛), 𝑗 =

1, … , 𝑚, 𝑥 ∈ 𝑋.  

We especially note the case when one type of 

resource is distributed, for example, money. In 

this case, problem (2) will have the form 

( )1
,

min ttn
tx

− ,                                                           (3) 

( ) ( ),,,, 1)()( 12 njjnjn tttxtt =−   

𝑥 = (𝑥1, … , 𝑥𝑚), 𝑥𝑗 ≥ 0; ∑ 𝑥𝑗
𝑚
𝑗=1 ≤ 𝐴, 𝑗 =

1, … , 𝑚, 
where A is a predetermined amount of 

continuous resource that is distributed among all 

jobs. This type of resource does not imply reuse, 

that is, being distributed to one of the jobs, it 

cannot be used to another. We will call this type 

of resource separable. Problem (3) is a separable 

problem, generally speaking, of nonlinear 

mathematical programming, for which numerous 

solution methods are known depending on the 

properties of the functions 𝜑𝑗(𝑥) [1]. Next, we 

will consider a similar problem, but with a 

different type of resource. 

 

2. Statement of the problem with 

reentrant resources 

 
This article considers another type of 

resource, namely, resources that allow reuse in 

different jobs at different points in time, for 
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example, people or equipment. We will call this 

type of resource reentrant. Let us formalize the 

problem of a similar problem (3), but for a 

reentrant resource. 

Similar to problem (3), we will consider a 

single resource in the amount of A, assuming it is 

infinitely divisible. 

min
𝑡,   𝑢

𝑡𝑛                                                                            (4) 

∫ 𝑊𝑗(𝑢𝑗(𝑧))𝑑𝑧 ≥ 𝐴𝑗

𝑡𝑛2(𝑗)

𝑡𝑛1(𝑗)

,   𝑗 = 1, . . . , 𝑚, 

𝑢1(𝑡)+. . . . +𝑢𝑚(𝑡) ≤ 𝐴, 𝑡 ∈ [0, 𝑇],  
𝑡𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑚.  

where T is a sufficiently large number, 

obviously greater than the execution time of the 

set of works, Aj is the volume of the j-th work, 

uj(t) is the amount of resource allocated to 

execute the j-th work at time t, Wj(uj(t)) is the 

intensity of execution of the j-th work at time t 

depending on the resource involved at time t to 

execute this work. We assume that the functions 

W() are continuous, positive, monotonically 

increasing functions on the set [0; A]. Since their 

argument - the volume of resource allocated to 

the corresponding work, depends on time, we 

obtain a complex function of time. The meaning 

of the functions W() under consideration assumes 

that their integration over any time interval allows 

us to determine the volume of the corresponding 

work performed during a given time interval in 

units of calculation of the corresponding work. 

As a class of functions uj(t), it is advisable to 

consider non-negative piecewise continuous 

functions on the interval t∈[0,T], if we admit the 

possibility of instantaneous redistribution of the 

resource. The functions of instantaneous 

intensities Wj(), i.e. the volume of work 

performed per unit of time, in this formulation of 

the problem depend only on the instantaneous 

volume of allocated resources and do not depend 

on the stage of work execution. Such a 

simplification is adequate only in the case of 

homogeneous works. 

Formalization (4) is an optimization problem 

of complex design, since some of the 

optimization variables form a vector in a finite-

dimensional space (t1,…., tn)∈ Rn, and some form 

a vector function from an infinite-dimensional 

space (u1(t),…., um(t))∈ U. Such problems do not 

fit into any classes of optimization problems 

supported by analytical or numerical methods. In 

[14], this problem was formalized by the author 

as an optimal control problem, namely, the 

classical problem of speed. 

 

3. Problem with homogeneous 

linear intensity functions 

 
Let us consider problem (4) with the intensity 

functions of the following form Wj(uj(t))=ajuj(t). 

In [14], the authors considered a problem of this 

type for two independent jobs as an example. 

Using the formalization of this problem in the 

form of an optimal control problem and 

Pontryagin's maximum principle, an optimal 

solution was obtained, which was expressed 

functionally as 𝑇∗ =
1

𝐴
(

𝐴1

𝑎1
+

𝐴2

𝑎2
). In essence, this 

means that in this problem there is no need to 

distribute resources among jobs, nor, even more 

so, any dynamic redistribution of resources 

during the execution of jobs. It is sufficient to 

consistently direct all available resources to each 

of the two jobs. Let us prove this result for an 

arbitrary network schedule with homogeneous 

linear intensity functions.  

Theorem 1. For problem (4) in the case of 

linear homogeneous functions of the intensities of 

work execution Wj(uj(t))=ajuj(t), j=1,…,m, the 

optimal time for completing a set of works is 

𝑇∗ =
1

𝐴
(

𝐴1

𝑎1
+ ⋯ +

𝐴𝑚

𝑎𝑚
). 

Proof. 

For the case under consideration, problem (4) 

takes the following form (5). 

min
𝑡,   𝑢

𝑡𝑛                                                                            (5) 

𝑎𝑗 ∫ 𝑢𝑗(𝑧)𝑑𝑧 ≥ 𝐴𝑗

𝑡𝑛2(𝑗)

𝑡𝑛1(𝑗)

,   𝑗 = 1, . . . , 𝑚,            (6) 

𝑢1(𝑡)+. . . . +𝑢𝑚(𝑡) ≤ 𝐴, 𝑡 ∈ [0, 𝑇],            (7) 

𝑡𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑚.  

Constraints (6) can be replaced with strict 

equalities, since the resource uj(t) is a resource 

allocated strictly to work j, with a volume of Vj, 

and there is no reason to allocate it in a larger 

volume. Similarly, we can consider strict equality 

in constraint (7). Since underutilization of the 

resource, due to the monotonic non-decrease of 

the intensity functions Wj(), cannot speed up the 

project execution time. Taking this into account, 

we write down an equivalent form of the problem. 
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min
𝑡,   𝑢

𝑡𝑛                                                                           (8) 

∫ 𝑢𝑗(𝑧)𝑑𝑧 =
𝐴𝑗

𝑎𝑗

𝑡𝑛2(𝑗)

𝑡𝑛1(𝑗)

,   𝑗 = 1, . . . , 𝑚,                (9) 

𝑢1(𝑡)+. . . . +𝑢𝑚(𝑡) = 𝐴, 𝑡 ∈
[0, 𝑇],                                                                                
𝑡𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑚.  

The solution of problem (8), as well as 

problem (5), always exists by virtue of the well-

known theorem on the existence of a minimum of 

a continuous function on a closed bounded set. 

Obviously, it can be stated that there exists an 

optimal solution to problem (8) such that 

𝑢𝑗(𝑡) = 0, ∀ 𝑡 ∉  [𝑡𝑛1(𝑗),  𝑡𝑛2(𝑗)] .          (10) 

Next, we consider a solution (t, u) of this type. 

We further arrange the sequence of values of the 

vector t, namely, 𝑡𝑘1
, … , 𝑡𝑘𝑛

. Obviously, 𝑡𝑘1
=

𝑡1, and 𝑡𝑘𝑛
= 𝑡𝑛. Further, from the constraints of 

problem (8) it follows that 

∑ ∫ 𝑢𝑗(𝑡)𝑑𝑡 =

𝑡𝑘𝑖

𝑡𝑘𝑖−1

𝑚

𝑗=1

∫ (∑ 𝑢𝑗(𝑡))𝑑𝑡

𝑚

𝑗=1

𝑡𝑘𝑖

𝑡𝑘𝑖−1

= 𝐴(𝑡𝑘𝑖
− 𝑡𝑘𝑖−1

),     𝑖 = 2, … , 𝑛. 

And then, taking into account the constraints 

(9) and condition (10), we have 

∑ ∑ ∫ 𝑢𝑗(𝑡)𝑑𝑡 =

𝑡𝑘𝑖

𝑡𝑘𝑖−1

𝑚

𝑗=1

𝑛

𝑖=2

∑ 𝐴

𝑛

𝑖=2

(𝑡𝑘𝑖
− 𝑡𝑘𝑖−1

)

= 𝐴(𝑡𝑛 − 𝑡1) = 

= ∑ ∑ ∫ 𝑢𝑗(𝑡)𝑑𝑡 =

𝑡𝑘𝑖

𝑡𝑘𝑖−1

𝑛

𝑖=2

𝑚

𝑗=1

∑ ∫ 𝑢𝑗(𝑡)𝑑𝑡

𝑡𝑛2(𝑗)

𝑡𝑛1(𝑗)

𝑚

𝑗=1

=  ∑
𝐴𝑗

𝑎𝑗
.

𝑚

𝑗=1

 

And therefore, in the optimal solution under 

consideration 

𝐴(𝑡𝑛 − 𝑡1) = ∑
𝐴𝑗

𝑎𝑗
.

𝑚

𝑗=1

 

Whence follows the statement of the theorem 

𝑇∗ = (𝑡𝑛 − 𝑡1) =
1

𝐴
(

𝐴1

𝑎1
+ ⋯ +

𝐴𝑚

𝑎𝑚
). 

Since 
1

𝐴

𝐴𝑗

𝑎𝑗
 is the time it takes for the full 

resource A to complete the task j, the time it takes 

to complete the task set obtained in the theorem 

corresponds to the sequential execution of the 

tasks using the full resource. The permissible 

order of task execution is determined by the 

network schedule and, generally speaking, is not 

unambiguous, which does not affect the time it 

takes to complete the task set.  

 

4. Problem with homogeneous 

nonlinear intensity functions 

 
We will begin the study by considering the 

simplest network graph, namely, let there be only 

two independent jobs with nonlinear intensity 

functions W1 (u) and W2 (u), with volumes A1 and 

A2, respectively. For the study, we will use an 

optimization model in the Excel environment. 

Since we cannot perform infinite-dimensional 

optimization in Excel for the entire class of 

functions, we will consider class of functions u(t) 

are piecewise constant functions with at most one 

switching. In this regard, we introduce some 

additional notation and formalize the problem in 

this class of functions. 

min
𝑢1,𝑢2,𝑡,𝑇

𝑇                                                                (11) 

𝑊1(𝑢1)𝑡 + 𝑊1(𝑢2)(𝑇 − 𝑡) ≥ 𝐴1, 
𝑊2(𝐴 − 𝑢1)𝑡 + 𝑊2(𝐴 − 𝑢2)(𝑇 − 𝑡) ≥ 𝐴2, 

0 ≤ 𝑡 ≤ 𝑇, 
0 ≤ 𝑢1 ≤ 𝐴, 
0 ≤ 𝑢2 ≤ 𝐴. 

Where t is the switching moment, at t=0 or t=T 

there is no switching, u1 is the resource for 

performing job 1 in the time period from 0 to t, u2 

is the resource for performing job 1 in the time 

period from t to T. 

Next, we will test various possible algorithms 

for solving problem (11). To do this, we will 

conduct a series of computational experiments 

with various intensity functions and various 

numerical parameters and draw conclusions. Let's 

consider the following algorithms: 

1. "Sequential execution algorithm" (SEA). 

This algorithm implies sequential execution of 

jobs with the corresponding allocation of the full 

volume of resources for each job. It was this 

algorithm that turned out to be optimal for the 

linear case considered by us above. 

2. "Synchronous completion algorithm" 

(SCA). It assumes that parallel independent jobs 

that complete at one node of the network graph 

are completed simultaneously. Why complete 

any of these jobs before the others? After all, this 
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will not cause the final event to occur earlier. It is 

possible to reduce a part of the resource allocated 

for the execution of such "early" work and give it 

to speeding up longer works. 

3. "Maximum Intensity Algorithm" (MIA). It 

assumes that at each moment of time all works 

that can be executed are considered and the 

resource is distributed between them in such a 

way that the total intensity will be maximum. We 

expect that maximizing the total productivity at 

each moment of time will lead us to the optimal 

solution. 

4.1. Testing the APV algorithm 

Example 1.1 

𝑊1(𝑢) = 𝑢2, 𝑊2(𝑢) = 2𝑢2,
𝐴 = 6,   𝐴1 = 20, 𝐴2 = 40. 

As can be seen from the analysis of the 

solution results, first the full resource performed 

job 2 until the time 0.56, then there was a full 

switch to job 1, which was completed at the time 

1.11. Thus, the APV algorithm was implemented. 

Conclusion for example 1.1: The APV 

algorithm can lead to an optimal solution. 

Example 1.2 

𝑊1(𝑢) = √𝑢, 𝑊2(𝑢) = 2√𝑢,
𝐴 = 6,   𝐴1 = 20, 𝐴2 = 40. 

As can be seen from the solution results, there 

is no resource switching, the jobs are performed 

in parallel with the use of resources 3 and 3 and 

are completed simultaneously at the time 11.55. 

Thus, the ASZ algorithm is implemented. Let us 

calculate the result of the APV algorithm for 

example 1.2: 
20

√6
+

40

2√6
= 16,33. As we can see, it 

is not optimal. 

Conclusion for example 1.2: The APV 

algorithm may not lead to an optimal solution. 

General conclusion for the APV algorithm: 

The APV algorithm may or may not lead to an 

optimal solution. 

4.2. Testing the ASZ algorithm 

Based on example 1.2, we can conclude: The 

ASZ algorithm may lead to an optimal solution. 

Let us calculate the result of applying the ASZ 

algorithm for example 1.1: 
20

𝑢2 =
40

2(6−𝑢)2 , 𝑢 = 3. 

Hence, the project execution time is 20/9=2.22. 

According to example 1.1, this time is not 

optimal, and therefore, the ASZ algorithm does 

not lead to an optimal solution. 

General conclusion for the ASZ algorithm: 

The ASZ algorithm may or may not lead to an 

optimal solution. 

4.3. Testing the AMI algorithm 

Example 3.1 

𝑊1(𝑢) = 20√𝑢, 𝑊2(𝑢) = 𝑢2,
𝐴 = 6,   𝐴1 = 20, 𝐴2 = 40. 

Now we will solve the example using the AMI 

algorithm. We will find the resource allocation 

that provides the maximum integral intensity of 

work. The integral intensity function is 

F(u)=20√𝑢 + (6 − 𝑢)2, then we will calculate 

the derivative of this function as 𝐹′(𝑢) =
20

2√𝑢
−

2(6 − 𝑢). The stationary point, which 

corresponds to the maximum of the function, is 

the point u=1. This means that according to the 

AMI algorithm, it is necessary to start performing 

work 1 with resource 1, and work 2 with resource 

5. According to the AMI algorithm, this resource 

allocation is maintained until the first of the 

works is completed. The completion time of work 

1 is 1, and that of work 2 is 1.6. This means that 

the redistribution resources will occur in time 1, 

after the completion of work 1. By this time, the 

remainder of work 2 will be 15, which will begin 

to be performed by the full resource 6 and, 

accordingly, will be completed in time 0.42. 

Thus, the total project time will be 1.42, which is 

more than the optimal time of 1.35. 

Conclusion for example 3.1: The AMI 

algorithm may not lead to an optimal solution. 

It can be noted that if the volume of work 2 

were not 40, but 25, then the result of applying 

the AMI would not lead to an optimal solution. 

However, in this case, this solution would also be 

obtained using the ASZ algorithm. 

General conclusion for the AMI algorithm: 

The AMI algorithm may or may not lead to an 

optimal solution. Thus, none of the three 

“reasonable” algorithms considered by us in this 

section is an algorithmic solution for problem 

(11), and therefore for the wider class of problems 

described in section 2. 

 

5. The Question of the Existence 

of Optimal Internal Switching 

 
We consider the same problem as in section 4, 

namely, let there be only two independent jobs 

with nonlinear intensity functions W1 (u) and W2 

(u), with volumes A1 and A2, respectively, 

problem (11). In addition to the previously made 
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assumptions regarding the intensity functions 

W(u), namely, we assume that the functions W() 

are continuous, positive, monotonically 

increasing functions on the set [0; A], we will 

additionally assume their differentiability. 

By internal switching we mean the solution of 

problem (11), namely, piecewise constant 

functions with at most one switching, for which 

the constraints of problem (11) are satisfied as 

strict equalities: 0<t<T, 0<u1<A, 0<u2<A and 

u1≠u2. Substantially, this means that the 

redistribution of resources occurs not "in 

connection with the beginning" of some work and 

not "in connection with the end" of some work, 

but in the process of performing both works. For 

definiteness, we assume that u1<u2. This 

assumption does not violate the generality of the 

problem, since otherwise it is sufficient to swap 

the indexing of the intensity functions W1 (u) and 

W2 (u). Note that in all the examples we 

considered in Section 4, the optimal solutions 

were not internal switchings. This raises a natural 

question: is it possible to have such a set of 

intensity functions for problem (11), namely W1 

(u) and W2 (u), for which the optimal solution is 

an internal switching? It turns out that there is, but 

finding such an example is a non-trivial task. 

Various combinations of intensity functions from 

the classes of convex, concave and convex-

concave functions (like 𝑥3) did not lead to 

optimal internal switching. 

Let us consider an even more special case of 

problem (11), namely, when both jobs are the 

same, i.e. W1(u)=W2(u)=W(u) and A1=A2=a. Is 

there a problem of this type, all of whose optimal 

solutions are internal switchings? Problem (11) 

takes the following form in this case 

min
𝑢1,𝑢2,𝑡,𝑇

𝑇                                                                 (12) 

𝑊 (𝑢1)𝑡 + 𝑊 (𝑢2)(𝑇 − 𝑡) ≥ 𝑎, 
𝑊 (𝐴 − 𝑢1)𝑡 + 𝑊 (𝐴 − 𝑢2)(𝑇 − 𝑡) ≥ 𝑎, 

0 ≤ 𝑡 ≤ 𝑇, 
0 ≤ 𝑢1 ≤ 𝑢2 ≤ 𝐴. 

To find the example that interests us, we give 

a geometric interpretation of problem (12). 

Consider a phase space in which the x coordinate 

is the value W(u), and the y coordinate is the 

value W(A-u). The curve of this space that 

corresponds to the values of the parameter u from 

0 to A is called the "intensity curve". The 

coordinates of the points of this curve represent 

the set of all possible instantaneous distributions 

of intensities between jobs. This curve is 

symmetric with respect to the bisector of the 

positive quadrant of the coordinate plane. We 

introduce the following notation: 

𝑘1 = 𝑡, 𝑘2 = 𝑇 − 𝑡, 𝑥1 = 𝑊(𝑢1), 𝑦1

= 𝑊(𝐴 − 𝑢1), 𝑥2 = 𝑊(𝑢2), 𝑦2

= 𝑊(𝐴 − 𝑢2). 
Then problem (12) takes the form: 

min
𝑢1,𝑢2,𝑘1,𝑘2

(𝑘1 + 𝑘2)                                           (13) 

𝑘1 (
𝑥1

𝑦1
) + 𝑘2 (

𝑥2

𝑦2
) ≥ (

𝑎
𝑎

) 

0 ≤ 𝑘1, 0 ≤ 𝑘2, 0 ≤ 𝑢1 ≤ 𝑢2 ≤ 𝐴. 
Representation (13) makes it possible to 

geometrically “see” the solution to the problem. 

We have a parametrically specified curve in the x 

and y axes, namely: x=W(u), y=W(A-u), 0≤u≤A. 

Further we will call it the “intensity curve”. An 

example of such a curve is shown in Fig. 1. What 

properties does this curve have? 

1) It always starts at the point (0, W(A)), 

which corresponds to the parameter value u=0, 

and ends at the point (W(A), 0), which 

corresponds to the parameter value u=A. 

2) The curve is symmetrical with respect to the 

bisector of the first quadrant of the coordinate 

plane (y=x). This follows from the fact that the 

points corresponding to the parameter u and A-u, 

namely, (W(u), W(A-u)) and (W(A-u), W(u)) 

have the indicated symmetry. 

3) The function y(x) is decreasing. This 

follows from the fact that if u1<u2, then W(A-

u1)>W(A-u2). 

As we see, the intensity curve in Fig. 1 has 

the above properties. 
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Fig. 1. Geometric representation of problem 

(13) (case 1). 

 

According to the statement (13), we have 4 

“control levers” at our disposal: variables u1, u2, 

which determine the vectors (x1, y1) and (x2, y2), 

and variables k1, k2. Let us consider the isolines 

of the functional for fixed values of the parameter 

u1, u2, which correspond to points P and Q in Fig. 

1. The isolines are segments between the rays [O, 

P) and [O, Q) parallel to the segment [P, Q], for 

example [P1, Q1] (Fig. 1). Let us consider the case 

when P and Q are on different sides of the bisector 

(case 1). The value of the functional for the 

segment [P, Q] is 1, and for the segment [P1, Q1] 

the value is |OV1 |/|OV|. As is easy to see, the 

fulfillment of the conditions of problem (13) 

means that the segment parallel to the segment [P, 

Q] has a non-empty intersection with the shaded 

rectangular region with the vertex at point L (Fig. 

1). Such a segment, which corresponds to the 

minimum value of the functional, as can be seen 

from Fig. 1, is the segment [P*, Q*], and the 

corresponding value of the functional is equal to 

|OL|/|OV|. From this, in turn, it follows that the 

minimum value of the functional is achieved at 

the maximum value of the length |OV|. 

Thus, the geometric solution to the problem is 

to find on the intensity curve such points P and Q 

for which the point V will be maximally distant 

from the point O. Note also that in our 

consideration, points P and Q were chosen to lie 

on different sides of the bisector of the positive 

quadrant (case 2). Let us further study the 

question of the advisability of choosing points P 

and Q on the same side of the bisector (Fig. 2). 

 
Fig. 2. Geometric representation of problem 

(13) (case 2). 

 

In this case, the position of the isoline of the 

functional, at which the minimum of the 

functional is achieved, is the segment [P*, Q*], 

parallel to the segment [P, Q] (Fig. 3), and the 

value of the functional in this case is equal to |OP* 

|/|OP|. Next, we construct the segment [P, P1] 

parallel to the segment [P*, L]. Now we compare 

the current value of the minimum functional for 

this choice of points P and Q with the result 

corresponding to the choice of P=Q=V, where V 

is the intersection point of the intensity curve with 

the bisector of the positive quadrant. For given 

choice of points, the minimum value of the 

functional is |OL|/|OV|. The following chain of 

inequalities and their consequences is valid: 

|𝑂𝑃1| < |𝑂𝑉| →
|𝑂𝐿|

|𝑂𝑉|
<

|𝑂𝐿|

|𝑂𝑃1|
=

|𝑂𝑃∗|

|𝑂𝑃|
. 

This means that the choice of P=Q=V is 

always better than the choice of arbitrary points P 

and Q lying on the same side of the bisector of the 

positive quadrant. Thus, when searching for a 

geometric solution, it is sufficient to consider 

only the points P and Q on different sides of the 

bisector, and in the limiting case, coinciding and 

lying on it. Next, we study several special cases. 

1) Let the function W(u) be convex. Then, 

using the differentiation formula for a 

parametrically defined function [15], we have 
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𝑑2𝑦

𝑑𝑥2
=

𝑊̈(𝐴 − 𝑢)𝑊̇(𝑢) + 𝑊̈(𝑢)𝑊̇(𝐴 − 𝑢)

𝑊̇(𝑢)3
(14) 

Since 𝑊̇(𝑢) ≥ 0, since the function W(u) is 

non-decreasing and 𝑊̈(𝑢) ≥ 0, since the function 

W(u) is convex, we have 

𝑑2𝑦

𝑑𝑥2
≥ 0, 

and therefore, the intensity curve is convex 

(Fig. 6). 

In this case, applying the above geometric 

ideas, it is obvious that the optimal position of the 

points P* and Q* should be chosen as shown in 

Fig. 3. In this case, 𝑢1
∗ = 0, and 𝑢2

∗ = 𝐴. This 

corresponds to the sequential execution of work 

using the full resource. Let us demonstrate this 

further using a specific numerical example. An 

example for this case can be example 1.1, 

considered earlier, with the difference that the 

intensity functions in it are convex, but different 

from each other. Its numerical solution, as we 

have seen, really suggests sequential execution of 

work as an optimal solution. In addition, let us 

construct an intensity curve for example 1.1. (Fig. 

4). As we see, the symmetry property is violated, 

but the convexity property of the intensity curve 

graph is preserved. And therefore, our geometric 

reasoning remains valid. 

 

 
Fig. 3. The case of a convex intensity curve. 

 
Fig. 4. Intensity curve of example 1.1. 

 

2) Let the function W(u) be concave. Again, 

we use formula (14). Since 𝑊̇(𝑢) ≥ 0, since the 

function W(u) is non-decreasing 𝑊̈(𝑢) ≤ 0, 

since the function W(u) is concave, we have 

𝑑2𝑦

𝑑𝑥2
≤ 0, 

and therefore, the intensity curve is concave 

(Fig. 5). 

 
Fig. 5. The case of a concave intensity curve. 

 

In this case, applying the above geometric 

ideas, it is obvious that the optimal position of the 

points P* and Q* should be chosen as shown in 

Fig. 2. In this case, 𝑢1
∗ = 𝑢2

∗ = 𝑢∗ = 0,5 𝐴 A. In 

the case where the intensity functions are concave 

but not identical, u* is the root of the equation 

W1(u)=W2(A-u), which, due to the properties of 

the intensity functions, has a unique solution. 

This corresponds to the parallel execution of 

work with the distribution of the resource u* and 

A−𝑢∗. We will demonstrate this further on a 

specific numerical example. An example for this 
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case can be example 1.2, considered earlier, with 

the difference that the intensity functions in it are 

concave, but different from each other. Its 

numerical solution, as we have seen, is indeed the 

optimal solution is offered by parallel execution 

of works with synchronous completion. In 

addition, we will construct the intensity curve for 

example 1.2. (Fig. 6). As we can see, the 

symmetry property is violated, but the property of 

concavity of the intensity curve graph is 

preserved. And therefore, our geometric 

reasoning remains valid. 

 
Fig. 6. Intensity curve for example 1.2. 

 

Let us now return to the question posed 

earlier: is it possible to have such a set of intensity 

functions for problem (11), namely W1(u) and 

W2(u), for which the optimal solution is an 

internal switching? From the consideration of 

cases 1) and 2) it is clear that in the class of 

convex or concave intensity functions this is 

impossible. From the geometric approach we 

have developed above, it is clear that internal 

switching is possible for a convex-concave 

intensity curve, as shown, for example, in Fig. 7. 

The points P* and Q*, constructed on the basis of 

the geometric approach, are also shown there. To 

verify the reality of such a case, let us consider a 

specific numerical example 5.1. 

Example 5.1 

𝑊1(𝑢) = 𝑊2(𝑢) = 𝑢 +
1

6
sin (𝜋𝑢),

𝐴 = 3,  𝐴1 = 20, 𝐴2 = 20. 
The intensity functions are convex-concave. 

The intensity curve is shown in Fig. 8 and is also 

a convex-concave function. The results of the 

solution are as follows t=6, T=12, u1=2,5, u2=0,5. 

As can be seen from the obtained result, the 

solution to this problem the solution to this 

problem is a complete internal switching, which 

is what we expected based on the geometry of the 

intensity curve. 

 
Fig. 7. Convex-concave intensity curve. 

 

 
 

Fig. 8. Intensity curve of example 5.1. 

 

 

Conclusion 
The problem of optimal allocation of reentrant 

resources for performing a set of independent 

jobs was considered. For the simplest case, 

namely, the case of homogeneous linear 

productivity functions, an analytical solution was 

obtained and substantiated. For the case of 

nonlinear homogeneous productivity functions, 
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some resource allocation algorithms were studied 

and their non-optimality was shown in the general 

case. The question of the existence of full internal 

switching as a solution to the problem in the case 

of two jobs was posed. The concept of an 

intensity curve was introduced and a geometric 

optimality criterion was constructed on its basis. 

A specific numerical example with full internal 

switching as an optimal solution was given. 
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