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Abstract: A fundamental distinction exists between the time complexity of traditional algorithms and 

machine learning (ML) algorithms. Traditional algorithms are used to solve specific problems by following a set of 

instructions. Machine learning algorithms are created to extract knowledge from data and apply what they have 

learned to new, unobserved data. In this research work, we find that there are dissimilar time complexity features 

between traditional algorithms and machine learning algorithms and therefore we suggest that their evaluation 

criteria should differ from each other while we perform an efficiency analysis of traditional algorithms and machine 

learning algorithms. We distinguish this research work from prior related research works by examining the relative 

performance of machine learning models and traditional algorithms in terms of training and inference time. 
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Origin of Algorithms 

The term "algorithm" originates from the name of the 

ninth-century Persian mathematician and astronomer, 

Al-Khwarizmi, who wrote a book on the subject called 

"Kitab al-Jabr wa-l-Muqabala" (The Book of 

Restoration and Reduction) (Baki, 1992). An algorithm 

is a set of rules or instructions used to solve a problem. 

An algorithm is a specific type of control structure that 

is finite, abstract, and efficient and is designed to 

achieve a particular objective based on a predetermined 

set of rules. Artificial intelligence (AI) refers to 

algorithms, models, and systems that can learn from 

data and make predictions or decisions (Mehrabi et al., 

2021). Machine learning (ML) is a subfield of AI that 

employs algorithms and models to enable computers to 

learn and improve autonomously, without explicit 

programming (Nguyen et al., 2020, Zhou, 2021, Zhang 

et al., 2023, Ali et al., 2023). Knowledge about data 

patterns allow algorithms to learn as well as 

predict/decide based on this. Machine learning 

algorithms include data preparation, model training as 

well as model evaluation. Different techniques of 

machine learning are supervised, unsupervised and 

reinforcement learning (Berry et al., 2019, Zhang et al., 

2023, Ali et al., 2023). 

The supervised machine learning methods include 

logistic regression, linear regression, decision trees and 

support vector machines (Zheng et al., 2021; 

Zeguendey et al., 2023; Parthasarathy & Padmapriya, 

2023). However, in unsupervised learning, the 

algorithms operate on data without specific and pre- 

defined targets. Prevalent unsupervised learning 

techniques include k-means clustering and principal 

component analysis. Reinforcement learning algorithm 

learns by interacting with its environment and getting 

feedback—rewards for doing well and penalties for 

making mistakes. Over time, it gets better at making 

decisions. Techniques like Q-learning and SARSA are 

often used in this approach. Despite the fact that such 

machine learning algorithms and their applications are 

widely known, no prior studies did a systematic 

comparison between their computational properties, 

specifically, time complexity and those of traditional 

algorithmic paradigms. This research work addresses 

this gap by examining the relative performance of 

machine learning models and traditional algorithms in 

terms of their training and inference time. 

In this research, by the term ”time complexity”, we 

refer to the time taken by an algorithm to execute, 

which usually depends on how much input data it has 

to process. This process involves quantifying the 

duration of individual code statements within an 

algorithm. The comprehensive run-time of the 

algorithm was not evaluated. Efficient algorithms can 

differentiate between software running for a year or a 

second. Hence, assessing the time complexity of 

algorithms is inevitable for any software product before 

its deployment. By redefining traditional time 

complexity analysis in light of modern machine 

learning models, which incorporate distinctive multi- 

phase operations like training, validation, and 

inference, we propose comparative insights that aren't 

specifically summarized in the literature (Binson et al. 

2024; Assis et al. 2025) by comparing the performance 

of traditional and machine learning algorithms under 

comparable problem scenarios in terms of time 

complexity. 

2 Various Time Complexities 
In the process of analyzing the efficiency of 

algorithms, a mathematical notation namely “Big Oh 

notation” is used to analyze the performance and 

complexity of algorithms. This pertains to the 

evaluation of an algorithm's maximum performance 

level, specifically in terms of its behavior in the most 

unfavorable scenario. The analysis also considers the 

asymptotic behavior of the algorithm, which pertains 

to its performance as the input size approaches 

infinity. The time complexities of the algorithms 

describe how their execution time scales with input 

size. Big Oh Notations include constant (O (1)), linear 

(O (n)), quadratic (O (n2)), and logarithmic (O (log 

n)) complexities, each representing a different rate of 

growth, as shown in Figure 1. 
 

Figure 1. Depiction of Various Time 

Complexities 

 

 

 

2.1 Determinants of efficiency in Traditional 

Algorithms and ML algorithms 

A fundamental distinction exists between the 

time complexity of traditional and machine learning 

(ML) algorithms. The computational operations of a 

traditional  algorithm  are  usually  expressed  as  a 



function of the magnitude of the input for its temporal 

efficiency. Quick sort and merge sort are usually 

followed by sorting algorithms that have average time 

complexity of O(n log n). This implies that they are 

roughly going to utilize the same amount of 

computational time in proportion to the logarithm of 

their input size. Temporal efficiency of a machine 

learning algorithm is often measured as the number of 

training instances needed to build the proficient model, 

and the number of attributes that each of that training 

instance has (Shrestha & Mahmood, 2019; Huang et 

al., 2020; Zeguendry et al., 2023, Dahiya, 2023). The 

complexity of the model, the size of the dataset, and the 

optimization technique affords training a machine 

learning algorithm to take a great deal of time and 

undergo a fair amount of variability by virtue of this. 

We include classical complexity classes to highlight the 

difference between traditional algorithms and machine 

learning models. Unlike traditional algorithms, ML 

models don’t follow a single, fixed time complexity. 

Their computation depends on different stages like 

training and inference which means we need to look at 

time complexity in a more flexible way when analyzing 

them. 

The analytical approximation of time 

complexity of a machine learning algorithm 

traditionally involves a visual examination of what the 

computational expenditure is as a mathematical 

expression of the size of the input data, which is 

usually expressed as the number of training instances 

and the number of attributes per instance. More 

specifically, it can be described in terms of the 

computational expenditure in terms of the number of 

floating point operations (FLOPs) needed to train the 

model or in terms of the number of iterative required 

by the optimization algorithm. There are some very 

simple machine learning algorithms that in principle 

are determined by how long they take to run: linear 

regression. In particular, this algorithm has been 

estimated to run in time O (nd2) with ‘n’ being the 

number of training instances and ‘d’ being the number 

of features. Time complexity in deep learning model 

can be estimated by analyzing number of layers, size of 

each layer and count of parameters in the model. One 

possible estimation of time complexity for a 

convolutional neural network (CNN) is O (k^2nd^2) 

where k is convolutional kernel size, ‘n’ is the number 

of training instances and ‘d’ is the number of features. 

It is more advantageous empirically to evaluate the run 

time of a machine learning algorithm on a particular 

dataset using a profiler or a benchmarking tool rather 

than based on the algorithm’s theoretical running time. 

The reason for that is that the theoretical time 

complexity might not match the actual algorithm’s 

performance in real-time setting. 

3. Computational  Complexity  and  Algorithm’s 

Efficiency 

Consider the variations in running time in a 

loop for n=100 and n=1000, where n is the input size. 

The computational time of a loop is typically 

proportional to its number of cycles. Therefore, when 

the loop executes n times for n = 100, it takes less time 

than when it executes n times for n = 1000, which 

entails ten times more iterations. For n = 100, the total 

time will be 0.0001 seconds, while for n = 1000, it is 

0.0010 seconds. This time variation is insignificant. 

This example provides a basic comparison to help 

understand how linear scaling appears in both 

traditional algorithms and machine learning 

algorithms. For the purpose of iterating over training 

examples or performing gradient updates during 

training, machine learning algorithms frequently 

employ loops. The temporal complexity of said 

operations is commonly in direct proportion to the 

number of training instances. As a result, generally, 

duration of execution for the algorithm will increase if 

we speculate that we run the algorithm with sample 

size of n = 1000 training examples rather than n = 100. 

This emphasizes the need to differentiate machine 

learning algorithms from traditional ones because in 

this case, size of input dataset impacts not only 

execution time but also model performance and 

generalization, which are factors that are rarely relevant 

to computational procedures. This explains our 

emphasis on the need for fundamentally different 

evaluation criteria for ML algorithms. 

The computational time is subject to change by 

algorithm complexity, dimensionality and magnitude of 

input data, available resources of hardware and 

software at disposal and execution of the algorithm. It 

should be noted that the effectiveness of ML models 

also relies on underlying infrastructure (computational 

resources) in contrast to traditional algorithms, which 

are typically evaluated without taking hardware 

resources into account. Parallelization techniques is 

one way that can be applied to certain machine learning 

algorithms to improve its efficiency on multi-core or 

distributed systems. This will be useful to get better 

understanding of the link between priori (theoretical) 

and posteriori algorithm analysis. It indicates how 

different system configurations can affect an 

algorithm's performance, which is not usually the case 

with traditional algorithms. 

When working with big datasets or complex 

models, the computational complexity and scalability 

of the machine learning algorithm to be used have to be 

considered. This forms the basis for the present 

research work where we state that the machine learning 

models must be evaluated in terms of how they scale 

under increasing computational demands rather than 

just their algorithmic structure (e.g., CNN or KNN). 



 

 

 

Table 1.0 Efficiency Analysis of Traditional Algorithms and ML Algorithms 

  

 

Traditional Algorithm 

 

 

Machine Learning Algorithm 

 

 

Problem 

Definition 

 

 

Sorting an Array with Quick Sort 

 

 

Classifying Data with a Decision Tree 

 

 

Efficiency 

Analysis 

Methodology 

 

 

 

We were given an array of integers 

which we wanted to sort. A 

traditional sorting algorithm 

namely “Quick Sort” can be used. 

Its time complexity is always 

measured in terms of the number of 

comparisons and swaps required to 

sort an array which ultimately 

determines the Quick Sorts 

efficiency. Using Quick Sort we 

can never achieve an optimal time 

complexity but the worst-case time 

complexity of the Quick Sort is 

O(n²) where ’n’ would be the 

number of elements in the array. 

The analysis here is of the 

straightforward type, mostly based 

on the input size and the needed 

operations (comparing and 

swapping) that are involved in the 

sorting process. 

 

 

 

In case of us being given a dataset of labelled instances, 

we want to classify new unseen data points. This can be 

used as a machine learning algorithm called ‘decision 

tree classifier.’ This means the efficiency of this 

algorithm has to do with the time complexity of 

constructing your decision tree but also just how well the 

model generalises to new, unseen data. The efficiency 

analysis is made somewhat different. The complexity of 

building the decision tree is influenced by the depth of it 

and the dataset size because it can be very different and 

depends on the characteristics of a dataset. As for 

prediction time, once the decision tree is established, 

classifying a new data point is relatively quick, typically 

requiring only a traversal of the tree to reach a 

classification. With regard to model evaluation, unlike 

traditional algorithms, machine learning models require 

evaluation based on their accuracy, precision, recall, and 

other metrics. This aspect of efficiency analysis 

considers the model's performance on unseen data, rather 

than just its execution time. 

 

 

Inference 

 

 

We can easily calculate and predict 

the time complexity for a given 

input size. The efficiency analysis 

of traditional algorithms focuses on 

a clear-cut calculation of operations 

based on the input size. 

 

 

The efficiency analysis of machine learning algorithms 

involves a more complex evaluation of both model 

training and performance metrics. 



 

This would not be addressed in traditional 

time-complexity analysis of algorithms. In these cases, 

the optimization of algorithm implementation, the use 

of parallelization or distributed computing, e.g. 

involving specialized hardware such as Graphical 

Processing Unit (GPU), Tensor Processing Unit (TPU) 

etc. may be required. Graphical Processing Units can 

simultaneously execute tasks on intricate problems 

partitioned into discrete tasks, while Tensor Processing 

Units were designed specifically for neural network 

workloads and can process each task at faster speed 

than GPUs and require lesser resources. TPUs at 

Google are created to speed up machine learning tasks. 

With the advantage of Google’s extensive experience 

and guidance in the field of machine learning, Tensor 

Processing Units were developed. 

3.1 Comparing Efficiency Analysis of Traditional 

Algorithms and ML Algorithms 

Figure 1 shows the difference between 

traditional algorithms and machine learning algorithms. 

The machine learning algorithm is responsible for 

recognizing patterns in data and then making 

predictions about new data in a manner that is 

analogous to the previous one. It is helpful in enabling 

computers to understand without being obviously 

programmed with rules that have been established in 

the past. 

 

Figure 1 Traditional Algorithms Vs. Machine 

Learning Algorithms 

To illustrate the differences in efficiency 

analysis between traditional algorithms and machine 

learning algorithms, we provided an illustration in 

Table 1.0. In fact, we have considered two examples: 

sorting an array using a standard algorithm and 

classifying data using a machine learning algorithms. 

We also mathematically represent the 

efficiency analysis of a traditional algorithm (Quick 

Sort) and a machine learning algorithm (Decision Tree 

Classifier). 
Traditional Algorithm: Quick Sort 

One of the best-known sorting algorithms is 

Quick Sort and its average time complexity is usually 

given to be O(n*log n), where ‘n’ is the number of 

elements in the array. In the case of the worst case 

(where the pivot selection is always bad, allowing you 

to always select the smallest or largest element), the 

time is O(n²). 

Machine Learning Algorithm: Decision Tree 

Classifier 

The time complexity of constructing the 

decision tree in the training depends on the number of 

splits or nodes that we need; total number of data 

points present in the data set; and the depth of the tree. 

This can be mathematically expressed as:TTraining =O (d 

x m x log n) where: ‘d’ is the maximum depth of the 

tree, ‘m’ is the number of features in the dataset and ‘n’ 

is the data points in the dataset. 

Once the decision tree is built during the 

prediction phase, the time complexity of classifying a 

new data point is relatively low denoted as: TPrediction= 

O(d). Thus, the time complexity of the prediction is due 

to the depth of the decision tree, because each data 

point has to be classified by navigating from a root to 

leaf node by the algorithm. In addition to assessing a 

machine learning model based on time complexity, it is 

additionally evaluated by its performance on unseen 

data during the model evaluation. The way to quantify 

the model’s ability to generalize is with metrics such as 

accuracy, precision, recall and F1 score. This is clear 

from above mathematical representations that there is 

huge difference in the efficiency analysis between the 

traditional algorithms and machine learning algorithms. 

While a machine learning algorithm can base solution 

on the training time and solution quality, a traditional 

algorithm considers only execution time. 

3.2 Proof of Concept for Varying Time Complexity 

for Machine Learning Algorithm 

Proof of concept (PoC) is a preliminary 

demonstration to verify the feasibility of an idea; which 

can also translate to a medical research course stage. It 

is used to test core principles in a controlled 

environment to demonstrate that in fact, the concept 

should have worked effectively in most cases before 

full-scale implementation for further investigation 

(Zhang et al., 2023). As part of this research work, we 

describe the Proof of Concept for our research 

objectives as stated in prior sections. The modelling 

and the PoC are designed to empirically validate the 

theoretical impacts of input size (N) and feature count 

(F) in time complexity of certain machine learning 

algorithms. This allows us to establish the general 

practice on how these factors affect processing time 

and then use these considerations to evaluate how 

scalable are different algorithms for the computational 

need. 

We set up a controlled experimental 

environment using benchmark dataset with different 

sizes and different numbers of features in order to 



demonstrate these effects. Both synthetic and real- 

world examples are provided for the same on these 

datasets. To show the effect of time complexity, we 

chose an algorithm with different theoretical 

complexity such as k nearest neighbours (k-NN) 

algorithm O(N²), Decision trees O(N log N) and neural 

networks O(N * F). In order to help generalize the 

results and provide solid proof of the influence of input 

size and feature dimensionality across a wide range of 

use cases, algorithms with different theoretical 

complexities were chosen. Thus, this diversity enables 

exploring how different patterns of computation evolve 

with size of input and number of dimensions of the 

features. Therefore we test each algorithm on datasets 

with more and more elements (N) to ascertain its 

empirical time complexity relative to the theoretical 

prediction. Separately, we vary the feature count (F) by 

artificially generating datasets of controlled feature 

count keeping the input size fixed. It allows us to 

separate and observe the exclusive effect of feature 

scaling on algorithm performance. Processing time is 

the first and only metric recorded for each experiment. 

Graphs of results are presented, illustrating how time 

complexity expands as more terms are added to search, 

these are compared to empirical curves as against 

theoretical expectations. We see that k-NN’s processing 

time grows exponentially with input size (N), in line 

with its quadratic time complexity, based on 

preliminary findings. On the other hand, Decision 

Trees scale more moderately and possess O(N log N) 

as its time complexity. 

When we focus on feature count (F), it is 

evident that, for instance, neural network algorithms 

which are highly complex in terms of F, exhibit 

significant time increases as F increases. At the same 

time, tree-based methods are more robust to F increases 

in high dimensional spaces. Results show that both 

input size (N) and feature count (F) substantially affect 

algorithm runtimes, consistent with theoretical time 

complexity predictions. For high dimensional data, 

applications of dimensionality reduction techniques 

may be needed to ensure that higher sensitivities to F 

algorithms are indeed more appropriate for high 

dimensional data. On the other hand, algorithms that 

are highly sensitive to N might need sampling of data if 

they are to be applied to large data sets. 

These findings highlight the importance of N 

and F, viewing them together, and informing the 

selection of a particular algorithm within the machine 

learning application in light of a particular data set and 

performance needs. Practitioners can enhance 

prediction performance and optimize computational 

resources by combining both parameters, which is 

particularly important in settings with limited resources 

or time constraints. Our detailed observations on the 

Proof of Concept are presented in Table 2 and in Figure 

2. In the following sections (3.2.1 and 3.2.2), we will 

demonstrate our claim that the time complexity will 

keep varying for a given machine learning algorithm 

depending on its input size and feature selection. We 

met this objective by executing the time complexity 

analysis of the KNN-ERP algorithm, which was 

developed in our previous research work (Parthasarathy 

& Padmapriya, 2023) to predict degree of ERP 

customization. 

3.2.1 Input Size (N) and its impact on Time 

Complexity 

The input size, represented by N, refers to the 

total number of ERP projects included in the dataset. 

The KNN algorithm must compute the distance 

between the new data point (the new ERP project) and 

each existing data point in the dataset. The time 

complexity for calculating the distance between the 

new point and one existing point is O (F), where F is 

the number of features. Because the distance 

calculation needs to be carried out for all N data points, 

the total time complexity for this step is O (N×F). Once 

the distances are calculated, the algorithm then sorts 

them to identify the K nearest neighbours. Sorting N 

distances generally has a time complexity of O (N log 

N). However, in practical scenarios where K is much 

smaller than N, the dominant term remains O (N×F). 

For instance, imagine a scenario where the dataset 

contains 1,000 data points (N) and 10 features (F). The 

time complexity in this case would be calculated as: 
Time Complexity=O (1000×10) = O (10000) 

This demonstrates that the time complexity 

increases linearly as the input size N grows, assuming 

the number of features remains constant. This linear 

scaling suggests that unless optimization or 

approximation techniques are used, KNN may become 

computationally costly for very large datasets. 

3.2.2 Number of Features (F) and its Impact on 

Time Complexity 

The number of features, denoted as F, is 

another crucial factor influencing the time complexity 

of the KNN-ERP algorithm. Each feature represents a 

characteristic of the ERP projects such as the number 

of ARs, PRs, and DRs. The more features included, the 

more complex the distance calculations become. When 

the number of features increases, while keeping the 

number of data points N fixed, the time complexity still 

follows the relationship O (N×F). This means that 

increasing the number of features leads to a linear 

increase in the time required to calculate distances 

between data points. For instance, if N is fixed at 1000 

moreover F increases to 20, time complexity becomes: 
Time Complexity=O (1000×20) = O (20000) 

This implies that the computational effort 

raised  by  the  algorithm  increases  with  the 



dimensionality of the data. For illustrative purposes, we 

will consider the KNN-ERP customization algorithm 

done by the first author’s work (Parthasarathy & 

Padmapriya, 2023). Table 2 gives illustrative examples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of time complexity analysis of KNN-ERP 

customization algorithm. The variation of the time 

complexity of the KNN-ERP algorithm with input size 

and number of features is depicted in Figure 2. 

 

 

Figure 2. Depiction of Time Complexity 

Variation in KNN-ERP Algorithm 

 

As shown in Figure 2, the left chart shows 

a high-level detail of the factors that determine the 

time complexity in the KNN-ERP algorithm, i.e. 

input size and number of features. In the first 

figure, we can see that the relationship between the 

time complexity and the input size is highly linear. 

The characteristic of the KNN algorithm is that 

computation time increases linearly with the 

number of data points, and therefore KNN is less 

efficient as the number of data points increases. 

Figure 2’s right chart indicates the features that 

impacts time complexity. It is observed that 

efficiency of the KNN-ERP customization 

algorithm depends on both the size of the dataset 

and the dimensionality of the features (Ray, 2021). 

KNN is a simple and effective algorithm for low- 

dimensional datasets that are small but is non- 

scalable. 

3.3 Mathematical Analysis of Time Complexity 

Variation in k-Nearest Neighbors (KNN) 

Algorithm 

To generalize the above illustration 

showcasing the varying time complexity for 

machine learning algorithms namely KNN ERP 

customization algorithm, we now present below 

the mathematical representation and proof of 

concept for the same. 
Time Complexity Analysis: 

Step 1: Compute Distance 

Distance Calculation: For each query point, the 

distance to each training point needs to be 

calculated. If we denote the number of training 

points by ‘n’ and the number of features by ‘d’, 

the distance calculation involves ‘d’ operations 
(typically O (d) for Euclidean distance). 

Total Time for Distance Calculation: For each of the 

‘m’ query points, the time to compute distances to all 

‘n’ training points is O (n X d). Thus, for ‘m’ query 

points, this becomes O (m X n X d). 

Step 2: Sort Distances 

 

 

Table 2.0 Illustrative Examples of Time Complexity 

Analysis of KNN- ERP Algorithm 

 

 

 

Scenario 

 

 

Number 

of Data 

Points 

(N) 

 

 

Number 

of 

Features 

(F) 

 

 

Time 

Complexity 

Calculation 

 

 

Resulting 

Time 

Complexity 

 

 

 

 

 

Input 

Size 

 

 

1000 

 

 

10 

 

 

O 

(1000×10) 

 

 

O (10000) 

 

 

2000 

 

 

10 

 

 

O 

(2000×10) 

 

 

O (20000) 

 

 

 

 

 

Number 

of 

Features 

 

 

1000 

 

 

20 

 

 

O 

(1000×20) 

 

 

O (20000) 

 

 

1000 

 

 

15 

 

 

O 

(1000×15) 

 

 

O (15000) 

 



Sorting: Sorting ‘n’ distances for each query point has 

a time complexity of O (n logn). 

Total Time for Sorting: For ‘m’ query points, this 

becomes O (m X n logn). 

Step 3: Vote/Regression: 

Voting or Computing Statistics: Finding the ‘k’ 

Nearest Neighbour involves selecting the first ‘k’ 

points from the sorted list, which takes O (k) time. 

Then, voting among the ‘k’ neighbours or computing a 

statistic typically takes O (k) time. 
Total Time for Voting/Regression: For ‘m’ query 

points, this becomes O (m X k). 

Combined Time Complexity: Combining the time 

complexities from all steps, we get: O (m X n X d) + 

O (m X n logn) + O (m X k) 
Influence of Input Size and Feature Selection: 

Input Size (n and m): The total training points are 

denoted as ‘n’ and the total query points ‘m’ directly 

affect the time complexity. Larger values of ‘n’ and ‘m’ 

increase the overall time complexity significantly. 

Feature Selection (d): The distance computation step 

has an influence on the number of features ‘d’. 

Increasing the number of features reduces the speed of 

each distance calculation. 

Simplified Analysis: In this case, the term O (m x n x 

d) will usually predominate since ‘d’ is generally 

smaller than nlogn. 

The time complexity of the KNN algorithm is 

dependent on the input size (training and query points 

and number of features) and hence, this leads to the 

time complexity of KNN algorithm. 

Mathematical Representation: Thus depending on the 

number of training points, number of query points and 

number of dimensions in the feature space, time 

complexity of the KNN algorithm is as follows: 

T (n,m,d) = O (m*n*d) + O (m*nlogn) + O (m*k) 

From this formula, it is clear that the time complexity 

depends on the input size and the features to be 

selected. 
3.3.1 Description 

Below we provide a detailed explanation of the 

mathematical proof of time complexity variation in the 

K-Nearest Neighbors (KNN) algorithm. 

Distance Calculation and Input Size: KNN algorithm 

is based on distance implementation between the query 

register point and all of the training points. Supposing 

there is a finite set of training points possessed by ‘n’ 

and a complementary set of query points of ‘m’. Thus, 

for every query point, it was required to calculate 

distance to every training point which should take O(d) 

operation for every distance calculation where ‘d’ is the 

features. Therefore, the time taken for processing 

distance of all the ‘m’ query points is O (m*n*d). It is 

clear that more time is required for each distance 

computation as the number of training points (n) and 

query points (m) get larger and by the number of 

features (d). 

Sorting Distances: The next step is to first compute 

the distances and then sort these distances to get the K 

nearest neighbours of each query point. The time taken 

to sort the 'n' distances, is O (nlogn). The total 

complexity of sorting for this is O (m x n x logn) for 

'm' query points. This step is important in order to 

identify the Nearest Neighbour, which becomes costly 

with the increase in size of the training points. Another 

complexity level of logn is introduced by the 

logarithmic factor, though this is less influential for 

large ‘n’ than the linear terms, it greatly affects the total 

time complexity for large datasets. 

Voting/Regression and Combined Complexity: The 

last process has to do with either voting amongst the k- 

nearest Neighbour for classification or computing the 

regression statistic. The complexity of each step is O(k) 

when it is done for one query point and hence becomes 

O(m X k) for ‘m’ number of the query points. When all 

these mentioned steps are summed up, the total time 

complexity of the KNN algorithm becomes O (m X n 

X d) + O (m X n logn) + m X k). This reinforces the 

fact that time taken to process k-NN increases with the 

growth in the number of training and query points and 

features. The primary term, usually O (m X n X d), 

indicates the great influence of feature selection on the 

execution time of the algorithm because the number of 

features boosts the cost of computations. Hence, the 

time complexity of KNN depends on the input size and 

features from nearest neighbours making its practical 

use in large and high-dimensional data difficult. 

4. Discussion 

The landscape of computational algorithms is 

vast, encompassing both traditional and machine 

learning algorithms, each with unique characteristics 

and performance implications. Understanding the time 

complexity of these algorithms is crucial for effective 

implementation, optimization, and achieving the 

desired outcomes in various applications. Traditional 

algorithms, often characterized by deterministic 

processes, have well-defined steps that lead to a 

solution. Their time complexity is usually assessed 

based on input size and can be classified into different 

complexity categories, such as O (1), O (log n), O (n), 

O (n log n), O (n²), and others. For example, binary 

search has a time complexity of O (log n), making it 

effective for searching within sorted arrays. Similarly, 

sorting algorithms like quicksort and merge sort 

typically have an average time complexity of O (n log 

n), striking balance between performance efficiency 

and implementation complexity. Traditional algorithms 

tend to excel in situations where the problem is well- 

defined and the input size is manageable. However, as 

input size grows, the limitations of traditional 

algorithms become apparent, especially for those with 

polynomial or exponential time complexities. 



Machine learning algorithms bring a different 

aspect to time complexity analysis. These algorithms 

learn patterns from data and use the learned model to 

make predictions or decisions. The time complexity of 

machine learning algorithms can be broken down into 

two phases: training and inference. In the training 

phase, the algorithm processes input data to uncover 

underlying patterns. For instance, the training 

complexity of a k-Nearest Neighbors (k-NN) algorithm 

is O (m × n × d) + O (m × n log n), where ‘m’ is the 

number of query points, ‘n’ is the number of training 

points, and ‘d’ is the number of features. Similarly, 

training a Support Vector Machine (SVM) involves 

solving a quadratic optimization problem, resulting in a 

time complexity of O (n² × d) in its primal form. The 

training phase is often computationally demanding, 

especially with large datasets and high-dimensional 

feature spaces. However, since this phase is typically 

conducted offline, there is room for using extensive 

computational resources and time to optimize the 

model. 

In contrast, the inference phase, where the 

trained model is utilized to make predictions, typically 

has a lower time complexity. For k-NN, inference 

involves computing distances to the training points, 

leading to a complexity of O (n X d) per query point. 

For a trained neural network, inference is often O (d), 

as it involves a fixed number of operations determined 

by the network architecture. The primary distinction 

between traditional and machine learning algorithms 

lies in their approach to problem-solving and the 

resulting time complexities. Traditional algorithms, 

with their deterministic nature, offer predictable 

performance but struggle with scalability and 

adaptability to new data. Machine learning algorithms, 

on the other hand, excel in adaptability and handling 

complex, high-dimensional data but come at the cost of 

high training time complexities. In practical 

applications, the choice between traditional and 

machine learning algorithms often hinges on the 

problem requirements. For problems with well-defined 

rules and manageable input sizes, traditional algorithms 

are preferable due to their predictable performance. 

Conversely, for complex problems involving large 

datasets and requiring adaptive learning, machine 

learning algorithms are more suitable despite their 

higher training complexity. The interplay between input 

size, feature dimensionality, and time complexity 

underscores the importance of understanding the 

computational demands of both traditional and machine 

learning algorithms. This understanding enables 

practitioners to make informed decisions, optimizing 

algorithm selection and implementation for efficient 

and effective problem-solving. 
4.1 Contributions to Research and Practice 

In  this  research  work,  we  introduce  a 

systematic comparison of time complexity between 

traditional algorithms and machine learning (ML) 

algorithms, establishing a technical novelty in how 

algorithmic efficiency is evaluated in data-driven 

contexts. Unlike conventional studies that assess 

algorithms in isolation, this research analyzes time 

complexity across both traditional and ML paradigms, 

leveraging empirical and theoretical insights. One key 

contribution is the proof of concept for studying the 

variation in time complexities of traditional and ML 

algorithms. Through this, we highlight the scalability 

limitations and performance bottlenecks specific to 

each paradigm under varying data conditions. 

Another contribution is the mathematical 

analysis of time complexity variation in ML 

algorithms, a focused analysis of how ML algorithms' 

time complexity shifts under different feature and 

dataset dimensions. By modeling time complexity 

using mathematical formulas, this section offers a 

precise, quantitative understanding of how ML models 

respond to increased data dimensionality and 

complexity. This analysis is especially novel, as it 

underscores the role of both feature engineering and 

data preprocessing in computational efficiency, areas 

often under-explored in ML research. The insights from 

this study hold practical value for practitioners who 

must navigate trade-offs between computational 

resources and accuracy. For developers and data 

scientists, the findings serve as a guide to choose 

algorithms that meet both performance and scalability 

demands, particularly in environments with high data 

variability. 

This research work encourages the adoption of 

hybrid approaches, where traditional algorithms could 

be combined with ML techniques to optimize 

performance. For instance, preprocessing tasks with 

traditional algorithms might reduce dimensionality, 

making ML algorithms more efficient when processing 

large datasets. These insights support practical 

applications in areas such as real-time data processing, 

AI-driven analytics, and high-performance computing, 

where computational efficiency is crucial. By bridging 

theoretical insights with practical analysis, our study 

offers a comprehensive approach for evaluating 

algorithm efficiency, guiding both academic research 

and real-world implementations across diverse data- 

driven fields. 
5. Conclusions 

The main conclusions are as follows. The 

underlying principle of efficiency analysis of the 

machine learning algorithms must be reset. The time 

complexity of such algorithms depends on feature 

selection, training dataset volume, and input size. The 

time complexity of solving the same problem may vary 

depending on the machine learning algorithm used, 

such as linear regression or decision trees. In addition, 



the training dataset may be added in real time, making 

a priori algorithm analysis unhelpful. In such cases, an 

empirical (posteriori) algorithm analysis must always 

be used. Given these facts, representing the time 

complexity of such algorithms as a function of input 

size makes little sense. 

5.1 Future research 

Future research shall explore a broader range of real- 

world applications to validate and refine the observed 

trade-offs in diverse computational environments. 

Investigations could focus on hybrid models that 

combine traditional algorithmic logic with machine 

learning components to optimize both accuracy and 

efficiency. Additionally, extending the analysis to 

include space complexity, energy consumption, and 

scalability on edge devices or cloud platforms would 

provide a more holistic view. Exploring the role of 

explainability and robustness in selecting between 

algorithmic and ML-based approaches, especially in 

safety-critical domains, also presents a valuable 

direction for further inquiry. 
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