

湖南大学学报（自然科学版）

Journal of Hunan University (Natural Sciences）
Available online at http://jonuns.org

第 53 卷 第 1 期

2 0 2 5 年

Vol. 53 No. 01

2025

Open Access Article 10.5281/zenodo.17079436

Computational Trade-offs Between Traditional Algorithms and Machine Learning

Models: A Time Complexity Perspective

1 S. Sivagurunathan, 2*Sudhaman Parthasarathy

1Associate Professor,

1Dept of Computer Science and Applications, The Gandhigram Rural Institute (Deemed to be University), India
1email:svgrnth@gmail.com

2Professor of Data Science

2Dept of Applied Mathematics and Computational Science, Thiagarajar College of Engineering, India
2 Corresponding Author:spcse@tce.edu

Abstract: A fundamental distinction exists between the time complexity of traditional algorithms and

machine learning (ML) algorithms. Traditional algorithms are used to solve specific problems by following a set of

instructions. Machine learning algorithms are created to extract knowledge from data and apply what they have

learned to new, unobserved data. In this research work, we find that there are dissimilar time complexity features

between traditional algorithms and machine learning algorithms and therefore we suggest that their evaluation

criteria should differ from each other while we perform an efficiency analysis of traditional algorithms and machine

learning algorithms. We distinguish this research work from prior related research works by examining the relative

performance of machine learning models and traditional algorithms in terms of training and inference time.

Keywords: Time complexity, machine learning, algorithms, efficiency analysis.

http://jonuns.org/
https://zenodo.org/records/17079436
mailto:svgrnth@gmail.com
mailto:spcse@tce.edu

Origin of Algorithms

The term "algorithm" originates from the name of the

ninth-century Persian mathematician and astronomer,

Al-Khwarizmi, who wrote a book on the subject called

"Kitab al-Jabr wa-l-Muqabala" (The Book of

Restoration and Reduction) (Baki, 1992). An algorithm

is a set of rules or instructions used to solve a problem.

An algorithm is a specific type of control structure that

is finite, abstract, and efficient and is designed to

achieve a particular objective based on a predetermined

set of rules. Artificial intelligence (AI) refers to

algorithms, models, and systems that can learn from

data and make predictions or decisions (Mehrabi et al.,

2021). Machine learning (ML) is a subfield of AI that

employs algorithms and models to enable computers to

learn and improve autonomously, without explicit

programming (Nguyen et al., 2020, Zhou, 2021, Zhang

et al., 2023, Ali et al., 2023). Knowledge about data

patterns allow algorithms to learn as well as

predict/decide based on this. Machine learning

algorithms include data preparation, model training as

well as model evaluation. Different techniques of

machine learning are supervised, unsupervised and

reinforcement learning (Berry et al., 2019, Zhang et al.,

2023, Ali et al., 2023).

The supervised machine learning methods include

logistic regression, linear regression, decision trees and

support vector machines (Zheng et al., 2021;

Zeguendey et al., 2023; Parthasarathy & Padmapriya,

2023). However, in unsupervised learning, the

algorithms operate on data without specific and pre-

defined targets. Prevalent unsupervised learning

techniques include k-means clustering and principal

component analysis. Reinforcement learning algorithm

learns by interacting with its environment and getting

feedback—rewards for doing well and penalties for

making mistakes. Over time, it gets better at making

decisions. Techniques like Q-learning and SARSA are

often used in this approach. Despite the fact that such

machine learning algorithms and their applications are

widely known, no prior studies did a systematic

comparison between their computational properties,

specifically, time complexity and those of traditional

algorithmic paradigms. This research work addresses

this gap by examining the relative performance of

machine learning models and traditional algorithms in

terms of their training and inference time.

In this research, by the term ”time complexity”, we

refer to the time taken by an algorithm to execute,

which usually depends on how much input data it has

to process. This process involves quantifying the

duration of individual code statements within an

algorithm. The comprehensive run-time of the

algorithm was not evaluated. Efficient algorithms can

differentiate between software running for a year or a

second. Hence, assessing the time complexity of

algorithms is inevitable for any software product before

its deployment. By redefining traditional time

complexity analysis in light of modern machine

learning models, which incorporate distinctive multi-

phase operations like training, validation, and

inference, we propose comparative insights that aren't

specifically summarized in the literature (Binson et al.

2024; Assis et al. 2025) by comparing the performance

of traditional and machine learning algorithms under

comparable problem scenarios in terms of time

complexity.

2 Various Time Complexities
In the process of analyzing the efficiency of

algorithms, a mathematical notation namely “Big Oh

notation” is used to analyze the performance and

complexity of algorithms. This pertains to the

evaluation of an algorithm's maximum performance

level, specifically in terms of its behavior in the most

unfavorable scenario. The analysis also considers the

asymptotic behavior of the algorithm, which pertains

to its performance as the input size approaches

infinity. The time complexities of the algorithms

describe how their execution time scales with input

size. Big Oh Notations include constant (O (1)), linear

(O (n)), quadratic (O (n2)), and logarithmic (O (log

n)) complexities, each representing a different rate of

growth, as shown in Figure 1.

Figure 1. Depiction of Various Time

Complexities

2.1 Determinants of efficiency in Traditional

Algorithms and ML algorithms

A fundamental distinction exists between the

time complexity of traditional and machine learning

(ML) algorithms. The computational operations of a

traditional algorithm are usually expressed as a

function of the magnitude of the input for its temporal

efficiency. Quick sort and merge sort are usually

followed by sorting algorithms that have average time

complexity of O(n log n). This implies that they are

roughly going to utilize the same amount of

computational time in proportion to the logarithm of

their input size. Temporal efficiency of a machine

learning algorithm is often measured as the number of

training instances needed to build the proficient model,

and the number of attributes that each of that training

instance has (Shrestha & Mahmood, 2019; Huang et

al., 2020; Zeguendry et al., 2023, Dahiya, 2023). The

complexity of the model, the size of the dataset, and the

optimization technique affords training a machine

learning algorithm to take a great deal of time and

undergo a fair amount of variability by virtue of this.

We include classical complexity classes to highlight the

difference between traditional algorithms and machine

learning models. Unlike traditional algorithms, ML

models don’t follow a single, fixed time complexity.

Their computation depends on different stages like

training and inference which means we need to look at

time complexity in a more flexible way when analyzing

them.

The analytical approximation of time

complexity of a machine learning algorithm

traditionally involves a visual examination of what the

computational expenditure is as a mathematical

expression of the size of the input data, which is

usually expressed as the number of training instances

and the number of attributes per instance. More

specifically, it can be described in terms of the

computational expenditure in terms of the number of

floating point operations (FLOPs) needed to train the

model or in terms of the number of iterative required

by the optimization algorithm. There are some very

simple machine learning algorithms that in principle

are determined by how long they take to run: linear

regression. In particular, this algorithm has been

estimated to run in time O (nd2) with ‘n’ being the

number of training instances and ‘d’ being the number

of features. Time complexity in deep learning model

can be estimated by analyzing number of layers, size of

each layer and count of parameters in the model. One

possible estimation of time complexity for a

convolutional neural network (CNN) is O (k^2nd^2)

where k is convolutional kernel size, ‘n’ is the number

of training instances and ‘d’ is the number of features.

It is more advantageous empirically to evaluate the run

time of a machine learning algorithm on a particular

dataset using a profiler or a benchmarking tool rather

than based on the algorithm’s theoretical running time.

The reason for that is that the theoretical time

complexity might not match the actual algorithm’s

performance in real-time setting.

3. Computational Complexity and Algorithm’s

Efficiency

Consider the variations in running time in a

loop for n=100 and n=1000, where n is the input size.

The computational time of a loop is typically

proportional to its number of cycles. Therefore, when

the loop executes n times for n = 100, it takes less time

than when it executes n times for n = 1000, which

entails ten times more iterations. For n = 100, the total

time will be 0.0001 seconds, while for n = 1000, it is

0.0010 seconds. This time variation is insignificant.

This example provides a basic comparison to help

understand how linear scaling appears in both

traditional algorithms and machine learning

algorithms. For the purpose of iterating over training

examples or performing gradient updates during

training, machine learning algorithms frequently

employ loops. The temporal complexity of said

operations is commonly in direct proportion to the

number of training instances. As a result, generally,

duration of execution for the algorithm will increase if

we speculate that we run the algorithm with sample

size of n = 1000 training examples rather than n = 100.

This emphasizes the need to differentiate machine

learning algorithms from traditional ones because in

this case, size of input dataset impacts not only

execution time but also model performance and

generalization, which are factors that are rarely relevant

to computational procedures. This explains our

emphasis on the need for fundamentally different

evaluation criteria for ML algorithms.

The computational time is subject to change by

algorithm complexity, dimensionality and magnitude of

input data, available resources of hardware and

software at disposal and execution of the algorithm. It

should be noted that the effectiveness of ML models

also relies on underlying infrastructure (computational

resources) in contrast to traditional algorithms, which

are typically evaluated without taking hardware

resources into account. Parallelization techniques is

one way that can be applied to certain machine learning

algorithms to improve its efficiency on multi-core or

distributed systems. This will be useful to get better

understanding of the link between priori (theoretical)

and posteriori algorithm analysis. It indicates how

different system configurations can affect an

algorithm's performance, which is not usually the case

with traditional algorithms.

When working with big datasets or complex

models, the computational complexity and scalability

of the machine learning algorithm to be used have to be

considered. This forms the basis for the present

research work where we state that the machine learning

models must be evaluated in terms of how they scale

under increasing computational demands rather than

just their algorithmic structure (e.g., CNN or KNN).

Table 1.0 Efficiency Analysis of Traditional Algorithms and ML Algorithms

Traditional Algorithm

Machine Learning Algorithm

Problem

Definition

Sorting an Array with Quick Sort

Classifying Data with a Decision Tree

Efficiency

Analysis

Methodology

We were given an array of integers

which we wanted to sort. A

traditional sorting algorithm

namely “Quick Sort” can be used.

Its time complexity is always

measured in terms of the number of

comparisons and swaps required to

sort an array which ultimately

determines the Quick Sorts

efficiency. Using Quick Sort we

can never achieve an optimal time

complexity but the worst-case time

complexity of the Quick Sort is

O(n²) where ’n’ would be the

number of elements in the array.

The analysis here is of the

straightforward type, mostly based

on the input size and the needed

operations (comparing and

swapping) that are involved in the

sorting process.

In case of us being given a dataset of labelled instances,

we want to classify new unseen data points. This can be

used as a machine learning algorithm called ‘decision

tree classifier.’ This means the efficiency of this

algorithm has to do with the time complexity of

constructing your decision tree but also just how well the

model generalises to new, unseen data. The efficiency

analysis is made somewhat different. The complexity of

building the decision tree is influenced by the depth of it

and the dataset size because it can be very different and

depends on the characteristics of a dataset. As for

prediction time, once the decision tree is established,

classifying a new data point is relatively quick, typically

requiring only a traversal of the tree to reach a

classification. With regard to model evaluation, unlike

traditional algorithms, machine learning models require

evaluation based on their accuracy, precision, recall, and

other metrics. This aspect of efficiency analysis

considers the model's performance on unseen data, rather

than just its execution time.

Inference

We can easily calculate and predict

the time complexity for a given

input size. The efficiency analysis

of traditional algorithms focuses on

a clear-cut calculation of operations

based on the input size.

The efficiency analysis of machine learning algorithms

involves a more complex evaluation of both model

training and performance metrics.

This would not be addressed in traditional

time-complexity analysis of algorithms. In these cases,

the optimization of algorithm implementation, the use

of parallelization or distributed computing, e.g.

involving specialized hardware such as Graphical

Processing Unit (GPU), Tensor Processing Unit (TPU)

etc. may be required. Graphical Processing Units can

simultaneously execute tasks on intricate problems

partitioned into discrete tasks, while Tensor Processing

Units were designed specifically for neural network

workloads and can process each task at faster speed

than GPUs and require lesser resources. TPUs at

Google are created to speed up machine learning tasks.

With the advantage of Google’s extensive experience

and guidance in the field of machine learning, Tensor

Processing Units were developed.

3.1 Comparing Efficiency Analysis of Traditional

Algorithms and ML Algorithms

Figure 1 shows the difference between

traditional algorithms and machine learning algorithms.

The machine learning algorithm is responsible for

recognizing patterns in data and then making

predictions about new data in a manner that is

analogous to the previous one. It is helpful in enabling

computers to understand without being obviously

programmed with rules that have been established in

the past.

Figure 1 Traditional Algorithms Vs. Machine

Learning Algorithms

To illustrate the differences in efficiency

analysis between traditional algorithms and machine

learning algorithms, we provided an illustration in

Table 1.0. In fact, we have considered two examples:

sorting an array using a standard algorithm and

classifying data using a machine learning algorithms.

We also mathematically represent the

efficiency analysis of a traditional algorithm (Quick

Sort) and a machine learning algorithm (Decision Tree

Classifier).
Traditional Algorithm: Quick Sort

One of the best-known sorting algorithms is

Quick Sort and its average time complexity is usually

given to be O(n*log n), where ‘n’ is the number of

elements in the array. In the case of the worst case

(where the pivot selection is always bad, allowing you

to always select the smallest or largest element), the

time is O(n²).

Machine Learning Algorithm: Decision Tree

Classifier

The time complexity of constructing the

decision tree in the training depends on the number of

splits or nodes that we need; total number of data

points present in the data set; and the depth of the tree.

This can be mathematically expressed as:TTraining =O (d

x m x log n) where: ‘d’ is the maximum depth of the

tree, ‘m’ is the number of features in the dataset and ‘n’

is the data points in the dataset.

Once the decision tree is built during the

prediction phase, the time complexity of classifying a

new data point is relatively low denoted as: TPrediction=

O(d). Thus, the time complexity of the prediction is due

to the depth of the decision tree, because each data

point has to be classified by navigating from a root to

leaf node by the algorithm. In addition to assessing a

machine learning model based on time complexity, it is

additionally evaluated by its performance on unseen

data during the model evaluation. The way to quantify

the model’s ability to generalize is with metrics such as

accuracy, precision, recall and F1 score. This is clear

from above mathematical representations that there is

huge difference in the efficiency analysis between the

traditional algorithms and machine learning algorithms.

While a machine learning algorithm can base solution

on the training time and solution quality, a traditional

algorithm considers only execution time.

3.2 Proof of Concept for Varying Time Complexity

for Machine Learning Algorithm

Proof of concept (PoC) is a preliminary

demonstration to verify the feasibility of an idea; which

can also translate to a medical research course stage. It

is used to test core principles in a controlled

environment to demonstrate that in fact, the concept

should have worked effectively in most cases before

full-scale implementation for further investigation

(Zhang et al., 2023). As part of this research work, we

describe the Proof of Concept for our research

objectives as stated in prior sections. The modelling

and the PoC are designed to empirically validate the

theoretical impacts of input size (N) and feature count

(F) in time complexity of certain machine learning

algorithms. This allows us to establish the general

practice on how these factors affect processing time

and then use these considerations to evaluate how

scalable are different algorithms for the computational

need.

We set up a controlled experimental

environment using benchmark dataset with different

sizes and different numbers of features in order to

demonstrate these effects. Both synthetic and real-

world examples are provided for the same on these

datasets. To show the effect of time complexity, we

chose an algorithm with different theoretical

complexity such as k nearest neighbours (k-NN)

algorithm O(N²), Decision trees O(N log N) and neural

networks O(N * F). In order to help generalize the

results and provide solid proof of the influence of input

size and feature dimensionality across a wide range of

use cases, algorithms with different theoretical

complexities were chosen. Thus, this diversity enables

exploring how different patterns of computation evolve

with size of input and number of dimensions of the

features. Therefore we test each algorithm on datasets

with more and more elements (N) to ascertain its

empirical time complexity relative to the theoretical

prediction. Separately, we vary the feature count (F) by

artificially generating datasets of controlled feature

count keeping the input size fixed. It allows us to

separate and observe the exclusive effect of feature

scaling on algorithm performance. Processing time is

the first and only metric recorded for each experiment.

Graphs of results are presented, illustrating how time

complexity expands as more terms are added to search,

these are compared to empirical curves as against

theoretical expectations. We see that k-NN’s processing

time grows exponentially with input size (N), in line

with its quadratic time complexity, based on

preliminary findings. On the other hand, Decision

Trees scale more moderately and possess O(N log N)

as its time complexity.

When we focus on feature count (F), it is

evident that, for instance, neural network algorithms

which are highly complex in terms of F, exhibit

significant time increases as F increases. At the same

time, tree-based methods are more robust to F increases

in high dimensional spaces. Results show that both

input size (N) and feature count (F) substantially affect

algorithm runtimes, consistent with theoretical time

complexity predictions. For high dimensional data,

applications of dimensionality reduction techniques

may be needed to ensure that higher sensitivities to F

algorithms are indeed more appropriate for high

dimensional data. On the other hand, algorithms that

are highly sensitive to N might need sampling of data if

they are to be applied to large data sets.

These findings highlight the importance of N

and F, viewing them together, and informing the

selection of a particular algorithm within the machine

learning application in light of a particular data set and

performance needs. Practitioners can enhance

prediction performance and optimize computational

resources by combining both parameters, which is

particularly important in settings with limited resources

or time constraints. Our detailed observations on the

Proof of Concept are presented in Table 2 and in Figure

2. In the following sections (3.2.1 and 3.2.2), we will

demonstrate our claim that the time complexity will

keep varying for a given machine learning algorithm

depending on its input size and feature selection. We

met this objective by executing the time complexity

analysis of the KNN-ERP algorithm, which was

developed in our previous research work (Parthasarathy

& Padmapriya, 2023) to predict degree of ERP

customization.

3.2.1 Input Size (N) and its impact on Time

Complexity

The input size, represented by N, refers to the

total number of ERP projects included in the dataset.

The KNN algorithm must compute the distance

between the new data point (the new ERP project) and

each existing data point in the dataset. The time

complexity for calculating the distance between the

new point and one existing point is O (F), where F is

the number of features. Because the distance

calculation needs to be carried out for all N data points,

the total time complexity for this step is O (N×F). Once

the distances are calculated, the algorithm then sorts

them to identify the K nearest neighbours. Sorting N

distances generally has a time complexity of O (N log

N). However, in practical scenarios where K is much

smaller than N, the dominant term remains O (N×F).

For instance, imagine a scenario where the dataset

contains 1,000 data points (N) and 10 features (F). The

time complexity in this case would be calculated as:
Time Complexity=O (1000×10) = O (10000)

This demonstrates that the time complexity

increases linearly as the input size N grows, assuming

the number of features remains constant. This linear

scaling suggests that unless optimization or

approximation techniques are used, KNN may become

computationally costly for very large datasets.

3.2.2 Number of Features (F) and its Impact on

Time Complexity

The number of features, denoted as F, is

another crucial factor influencing the time complexity

of the KNN-ERP algorithm. Each feature represents a

characteristic of the ERP projects such as the number

of ARs, PRs, and DRs. The more features included, the

more complex the distance calculations become. When

the number of features increases, while keeping the

number of data points N fixed, the time complexity still

follows the relationship O (N×F). This means that

increasing the number of features leads to a linear

increase in the time required to calculate distances

between data points. For instance, if N is fixed at 1000

moreover F increases to 20, time complexity becomes:
Time Complexity=O (1000×20) = O (20000)

This implies that the computational effort

raised by the algorithm increases with the

dimensionality of the data. For illustrative purposes, we

will consider the KNN-ERP customization algorithm

done by the first author’s work (Parthasarathy &

Padmapriya, 2023). Table 2 gives illustrative examples

of time complexity analysis of KNN-ERP

customization algorithm. The variation of the time

complexity of the KNN-ERP algorithm with input size

and number of features is depicted in Figure 2.

Figure 2. Depiction of Time Complexity

Variation in KNN-ERP Algorithm

As shown in Figure 2, the left chart shows

a high-level detail of the factors that determine the

time complexity in the KNN-ERP algorithm, i.e.

input size and number of features. In the first

figure, we can see that the relationship between the

time complexity and the input size is highly linear.

The characteristic of the KNN algorithm is that

computation time increases linearly with the

number of data points, and therefore KNN is less

efficient as the number of data points increases.

Figure 2’s right chart indicates the features that

impacts time complexity. It is observed that

efficiency of the KNN-ERP customization

algorithm depends on both the size of the dataset

and the dimensionality of the features (Ray, 2021).

KNN is a simple and effective algorithm for low-

dimensional datasets that are small but is non-

scalable.

3.3 Mathematical Analysis of Time Complexity

Variation in k-Nearest Neighbors (KNN)

Algorithm

To generalize the above illustration

showcasing the varying time complexity for

machine learning algorithms namely KNN ERP

customization algorithm, we now present below

the mathematical representation and proof of

concept for the same.
Time Complexity Analysis:

Step 1: Compute Distance

Distance Calculation: For each query point, the

distance to each training point needs to be

calculated. If we denote the number of training

points by ‘n’ and the number of features by ‘d’,

the distance calculation involves ‘d’ operations
(typically O (d) for Euclidean distance).

Total Time for Distance Calculation: For each of the

‘m’ query points, the time to compute distances to all

‘n’ training points is O (n X d). Thus, for ‘m’ query

points, this becomes O (m X n X d).

Step 2: Sort Distances

Table 2.0 Illustrative Examples of Time Complexity

Analysis of KNN- ERP Algorithm

Scenario

Number

of Data

Points

(N)

Number

of

Features

(F)

Time

Complexity

Calculation

Resulting

Time

Complexity

Input

Size

1000

10

O

(1000×10)

O (10000)

2000

10

O

(2000×10)

O (20000)

Number

of

Features

1000

20

O

(1000×20)

O (20000)

1000

15

O

(1000×15)

O (15000)

Sorting: Sorting ‘n’ distances for each query point has

a time complexity of O (n logn).

Total Time for Sorting: For ‘m’ query points, this

becomes O (m X n logn).

Step 3: Vote/Regression:

Voting or Computing Statistics: Finding the ‘k’

Nearest Neighbour involves selecting the first ‘k’

points from the sorted list, which takes O (k) time.

Then, voting among the ‘k’ neighbours or computing a

statistic typically takes O (k) time.
Total Time for Voting/Regression: For ‘m’ query

points, this becomes O (m X k).

Combined Time Complexity: Combining the time

complexities from all steps, we get: O (m X n X d) +

O (m X n logn) + O (m X k)
Influence of Input Size and Feature Selection:

Input Size (n and m): The total training points are

denoted as ‘n’ and the total query points ‘m’ directly

affect the time complexity. Larger values of ‘n’ and ‘m’

increase the overall time complexity significantly.

Feature Selection (d): The distance computation step

has an influence on the number of features ‘d’.

Increasing the number of features reduces the speed of

each distance calculation.

Simplified Analysis: In this case, the term O (m x n x

d) will usually predominate since ‘d’ is generally

smaller than nlogn.

The time complexity of the KNN algorithm is

dependent on the input size (training and query points

and number of features) and hence, this leads to the

time complexity of KNN algorithm.

Mathematical Representation: Thus depending on the

number of training points, number of query points and

number of dimensions in the feature space, time

complexity of the KNN algorithm is as follows:

T (n,m,d) = O (m*n*d) + O (m*nlogn) + O (m*k)

From this formula, it is clear that the time complexity

depends on the input size and the features to be

selected.
3.3.1 Description

Below we provide a detailed explanation of the

mathematical proof of time complexity variation in the

K-Nearest Neighbors (KNN) algorithm.

Distance Calculation and Input Size: KNN algorithm

is based on distance implementation between the query

register point and all of the training points. Supposing

there is a finite set of training points possessed by ‘n’

and a complementary set of query points of ‘m’. Thus,

for every query point, it was required to calculate

distance to every training point which should take O(d)

operation for every distance calculation where ‘d’ is the

features. Therefore, the time taken for processing

distance of all the ‘m’ query points is O (m*n*d). It is

clear that more time is required for each distance

computation as the number of training points (n) and

query points (m) get larger and by the number of

features (d).

Sorting Distances: The next step is to first compute

the distances and then sort these distances to get the K

nearest neighbours of each query point. The time taken

to sort the 'n' distances, is O (nlogn). The total

complexity of sorting for this is O (m x n x logn) for

'm' query points. This step is important in order to

identify the Nearest Neighbour, which becomes costly

with the increase in size of the training points. Another

complexity level of logn is introduced by the

logarithmic factor, though this is less influential for

large ‘n’ than the linear terms, it greatly affects the total

time complexity for large datasets.

Voting/Regression and Combined Complexity: The

last process has to do with either voting amongst the k-

nearest Neighbour for classification or computing the

regression statistic. The complexity of each step is O(k)

when it is done for one query point and hence becomes

O(m X k) for ‘m’ number of the query points. When all

these mentioned steps are summed up, the total time

complexity of the KNN algorithm becomes O (m X n

X d) + O (m X n logn) + m X k). This reinforces the

fact that time taken to process k-NN increases with the

growth in the number of training and query points and

features. The primary term, usually O (m X n X d),

indicates the great influence of feature selection on the

execution time of the algorithm because the number of

features boosts the cost of computations. Hence, the

time complexity of KNN depends on the input size and

features from nearest neighbours making its practical

use in large and high-dimensional data difficult.

4. Discussion

The landscape of computational algorithms is

vast, encompassing both traditional and machine

learning algorithms, each with unique characteristics

and performance implications. Understanding the time

complexity of these algorithms is crucial for effective

implementation, optimization, and achieving the

desired outcomes in various applications. Traditional

algorithms, often characterized by deterministic

processes, have well-defined steps that lead to a

solution. Their time complexity is usually assessed

based on input size and can be classified into different

complexity categories, such as O (1), O (log n), O (n),

O (n log n), O (n²), and others. For example, binary

search has a time complexity of O (log n), making it

effective for searching within sorted arrays. Similarly,

sorting algorithms like quicksort and merge sort

typically have an average time complexity of O (n log

n), striking balance between performance efficiency

and implementation complexity. Traditional algorithms

tend to excel in situations where the problem is well-

defined and the input size is manageable. However, as

input size grows, the limitations of traditional

algorithms become apparent, especially for those with

polynomial or exponential time complexities.

Machine learning algorithms bring a different

aspect to time complexity analysis. These algorithms

learn patterns from data and use the learned model to

make predictions or decisions. The time complexity of

machine learning algorithms can be broken down into

two phases: training and inference. In the training

phase, the algorithm processes input data to uncover

underlying patterns. For instance, the training

complexity of a k-Nearest Neighbors (k-NN) algorithm

is O (m × n × d) + O (m × n log n), where ‘m’ is the

number of query points, ‘n’ is the number of training

points, and ‘d’ is the number of features. Similarly,

training a Support Vector Machine (SVM) involves

solving a quadratic optimization problem, resulting in a

time complexity of O (n² × d) in its primal form. The

training phase is often computationally demanding,

especially with large datasets and high-dimensional

feature spaces. However, since this phase is typically

conducted offline, there is room for using extensive

computational resources and time to optimize the

model.

In contrast, the inference phase, where the

trained model is utilized to make predictions, typically

has a lower time complexity. For k-NN, inference

involves computing distances to the training points,

leading to a complexity of O (n X d) per query point.

For a trained neural network, inference is often O (d),

as it involves a fixed number of operations determined

by the network architecture. The primary distinction

between traditional and machine learning algorithms

lies in their approach to problem-solving and the

resulting time complexities. Traditional algorithms,

with their deterministic nature, offer predictable

performance but struggle with scalability and

adaptability to new data. Machine learning algorithms,

on the other hand, excel in adaptability and handling

complex, high-dimensional data but come at the cost of

high training time complexities. In practical

applications, the choice between traditional and

machine learning algorithms often hinges on the

problem requirements. For problems with well-defined

rules and manageable input sizes, traditional algorithms

are preferable due to their predictable performance.

Conversely, for complex problems involving large

datasets and requiring adaptive learning, machine

learning algorithms are more suitable despite their

higher training complexity. The interplay between input

size, feature dimensionality, and time complexity

underscores the importance of understanding the

computational demands of both traditional and machine

learning algorithms. This understanding enables

practitioners to make informed decisions, optimizing

algorithm selection and implementation for efficient

and effective problem-solving.
4.1 Contributions to Research and Practice

In this research work, we introduce a

systematic comparison of time complexity between

traditional algorithms and machine learning (ML)

algorithms, establishing a technical novelty in how

algorithmic efficiency is evaluated in data-driven

contexts. Unlike conventional studies that assess

algorithms in isolation, this research analyzes time

complexity across both traditional and ML paradigms,

leveraging empirical and theoretical insights. One key

contribution is the proof of concept for studying the

variation in time complexities of traditional and ML

algorithms. Through this, we highlight the scalability

limitations and performance bottlenecks specific to

each paradigm under varying data conditions.

Another contribution is the mathematical

analysis of time complexity variation in ML

algorithms, a focused analysis of how ML algorithms'

time complexity shifts under different feature and

dataset dimensions. By modeling time complexity

using mathematical formulas, this section offers a

precise, quantitative understanding of how ML models

respond to increased data dimensionality and

complexity. This analysis is especially novel, as it

underscores the role of both feature engineering and

data preprocessing in computational efficiency, areas

often under-explored in ML research. The insights from

this study hold practical value for practitioners who

must navigate trade-offs between computational

resources and accuracy. For developers and data

scientists, the findings serve as a guide to choose

algorithms that meet both performance and scalability

demands, particularly in environments with high data

variability.

This research work encourages the adoption of

hybrid approaches, where traditional algorithms could

be combined with ML techniques to optimize

performance. For instance, preprocessing tasks with

traditional algorithms might reduce dimensionality,

making ML algorithms more efficient when processing

large datasets. These insights support practical

applications in areas such as real-time data processing,

AI-driven analytics, and high-performance computing,

where computational efficiency is crucial. By bridging

theoretical insights with practical analysis, our study

offers a comprehensive approach for evaluating

algorithm efficiency, guiding both academic research

and real-world implementations across diverse data-

driven fields.
5. Conclusions

The main conclusions are as follows. The

underlying principle of efficiency analysis of the

machine learning algorithms must be reset. The time

complexity of such algorithms depends on feature

selection, training dataset volume, and input size. The

time complexity of solving the same problem may vary

depending on the machine learning algorithm used,

such as linear regression or decision trees. In addition,

the training dataset may be added in real time, making

a priori algorithm analysis unhelpful. In such cases, an

empirical (posteriori) algorithm analysis must always

be used. Given these facts, representing the time

complexity of such algorithms as a function of input

size makes little sense.

5.1 Future research

Future research shall explore a broader range of real-

world applications to validate and refine the observed

trade-offs in diverse computational environments.

Investigations could focus on hybrid models that

combine traditional algorithmic logic with machine

learning components to optimize both accuracy and

efficiency. Additionally, extending the analysis to

include space complexity, energy consumption, and

scalability on edge devices or cloud platforms would

provide a more holistic view. Exploring the role of

explainability and robustness in selecting between

algorithmic and ML-based approaches, especially in

safety-critical domains, also presents a valuable

direction for further inquiry.

Data Availability Statement

The data that support the findings of this study are

available from the corresponding author upon

reasonable request.

Author Contributions

Conceptualization, methodology, and analysis:

Sudhaman Parthasarathy; Writing—original draft

preparation: Sudhaman Parthasarathy;

S. Sivagurunathan: Validation and Writing [review

and editing]: All authors read and approved the final

manuscript.

Conflict of interest

The authors have no conflicts of interest to declare that

are relevant to the content of this article.

References

Ali, Y. A., Awwad, E. M., Al-Razgan, M., & Maarouf,

A. (2023). Hyperparameter search for machine learning

algorithms for optimizing the computational

complexity. Processes, 11(2), 349.

Assis, A., Dantas, J., & Andrade, E. (2025). The

performance-interpretability trade-off: a comparative

study of machine learning models. Journal of Reliable

Intelligent Environments, 11(1), 1.

Baki, A. (1992). Al Khwarizmi's Contributions to the

Science of Mathematics: Al Kitab Al Jabr Wa'l

Muqabalah. Journal of Islamic Academy of Sciences,

5(3), 225-228.

Berry, M. W., Mohamed, A., & Yap, B. W. (Eds.).

(2019). Supervised and unsupervised learning for data

science. Springer Nature.

Binson, V. A., Thomas, S., Subramoniam, M., Arun, J.,

Naveen, S., & Madhu, S. (2024). A review of machine

learning algorithms for biomedical applications. Annals

of Biomedical Engineering, 52(5), 1159-1183.

Dahiya, S. (2023). Scalable Machine Learning

Algorithms: Techniques, Challenges, and Future

Directions. MZ Computing Journal, 4(1).

Huang, L., Yin, Y., Fu, Z., Zhang, S., Deng, H., & Liu,

D. (2020). LoAdaBoost: Loss-based AdaBoost

federated machine learning with reduced computational

complexity on IID and non-IID intensive care data.

Plos one, 15(4), e0230706.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., &

Galstyan, A. (2021). A survey on bias and fairness in

machine learning. ACM Computing Surveys (CSUR),

54(6), 1-35.

Nguyen, T. T., Nguyen, N. D., & Nahavandi, S. (2020).

Deep reinforcement learning for multiagent systems: A

review of challenges, solutions, and applications. IEEE

transactions on cybernetics, 50(9), 3826-3839.

Parthasarathy, S., & Padmapriya, S. T. (2023).

Understanding algorithm bias in artificial intelligence-

enabled ERP software customization. Journal of Ethics

in Entrepreneurship and Technology, 3(2), 79-93.

Ray, S. (2021). An analysis of computational

complexity and accuracy of two supervised machine

learning algorithms—K-nearest neighbor and support

vector machine. In Data Management, Analytics and

Innovation: Proceedings of ICDMAI 2020, Volume 1

(pp. 335-347). Springer Singapore.

Shrestha, A., & Mahmood, A. (2019). Review of deep

learning algorithms and architectures. IEEE access, 7,

53040-53065.

Zeguendry, A., Jarir, Z., & Quafafou, M. (2023).

Quantum machine learning: A review and case studies.

Entropy, 25(2), 287.

Zhang, Z., Chen, J., & Zhao, W. (2023). Multi‐AGV

route planning in automated warehouse system based

on shortest‐time Q‐learning algorithm. Asian Journal of

Control.

Zheng, X., Jia, J., Guo, S., Chen, J., Sun, L., Xiong, Y.,

& Xu, W. (2021). Full parameter time complexity

(FPTC): A method to evaluate the running time of

machine learning classifiers for land use/land cover

classification. IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, 14,

2222-2235.

Zhou, Z. H. (2021). Machine learning. Springer Nature.

