% B3 BB 1Y
iA MEXPER (BRHER 2025%
5; Journal of Hunan University (Natural Sciences)
éﬂi Available online at http://jonuns.org Vol. 53 No. 01
_ 2025
Open Access Article d. 10.5281/zen0d0.17079436

Computational Trade-offs Between Traditional Algorithms and Machine Learning
Models: A Time Complexity Perspective

1S. Sivagurunathan, 2*Sudhaman Parthasarathy

'Associate Professor,
'Dept of Computer Science and Applications, The Gandhigram Rural Institute (Deemed to be University), India
email:svgrnth@gmail.com

*Professor of Data Science
Dept of Applied Mathematics and Computational Science, Thiagarajar College of Engineering, India
2 Corresponding Author:spcse@tce.edu

Abstract: A fundamental distinction exists between the time complexity of traditional algorithms and
machine learning (ML) algorithms. Traditional algorithms are used to solve specific problems by following a set of
instructions. Machine learning algorithms are created to extract knowledge from data and apply what they have
learned to new, unobserved data. In this research work, we find that there are dissimilar time complexity features
between traditional algorithms and machine learning algorithms and therefore we suggest that their evaluation
criteria should differ from each other while we perform an efficiency analysis of traditional algorithms and machine
learning algorithms. We distinguish this research work from prior related research works by examining the relative
performance of machine learning models and traditional algorithms in terms of training and inference time.

Keywords: Time complexity, machine learning, algorithms, efficiency analysis.

http://jonuns.org/
https://zenodo.org/records/17079436
mailto:svgrnth@gmail.com
mailto:spcse@tce.edu

Origin of Algorithms

The term "algorithm" originates from the name of the
ninth-century Persian mathematician and astronomer,
Al-Khwarizmi, who wrote a book on the subject called
"Kitab al-Jabr wa-I-Mugabala” (The Book of
Restoration and Reduction) (Baki, 1992). An algorithm
is a set of rules or instructions used to solve a problem.
An algorithm is a specific type of control structure that
is finite, abstract, and efficient and is designed to
achieve a particular objective based on a predetermined
set of rules. Artificial intelligence (Al) refers to
algorithms, models, and systems that can learn from
data and make predictions or decisions (Mehrabi et al.,
2021). Machine learning (ML) is a subfield of Al that
employs algorithms and models to enable computers to
learn and improve autonomously, without explicit
programming (Nguyen et al., 2020, Zhou, 2021, Zhang
et al., 2023, Ali et al., 2023). Knowledge about data
patterns allow algorithms to learn as well as
predict/decide based on this. Machine learning
algorithms include data preparation, model training as
well as model evaluation. Different techniques of
machine learning are supervised, unsupervised and
reinforcement learning (Berry et al., 2019, Zhang et al.,
2023, Ali et al., 2023).

The supervised machine learning methods include
logistic regression, linear regression, decision trees and
support vector machines (Zheng et al., 2021;
Zeguendey et al., 2023; Parthasarathy & Padmapriya,
2023). However, in unsupervised learning, the
algorithms operate on data without specific and pre-
defined targets. Prevalent unsupervised learning
techniques include k-means clustering and principal
component analysis. Reinforcement learning algorithm
learns by interacting with its environment and getting
feedback—rewards for doing well and penalties for
making mistakes. Over time, it gets better at making
decisions. Techniques like Q-learning and SARSA are
often used in this approach. Despite the fact that such
machine learning algorithms and their applications are
widely known, no prior studies did a systematic
comparison between their computational properties,
specifically, time complexity and those of traditional
algorithmic paradigms. This research work addresses
this gap by examining the relative performance of
machine learning models and traditional algorithms in
terms of their training and inference time.

In this research, by the term time complexity”, we
refer to the time taken by an algorithm to execute,
which usually depends on how much input data it has
to process. This process involves quantifying the
duration of individual code statements within an
algorithm. The comprehensive run-time of the
algorithm was not evaluated. Efficient algorithms can
differentiate between software running for a year or a

second. Hence, assessing the time complexity of
algorithms is inevitable for any software product before
its deployment. By redefining traditional time
complexity analysis in light of modern machine
learning models, which incorporate distinctive multi-
phase operations like training, wvalidation, and
inference, we propose comparative insights that aren't
specifically summarized in the literature (Binson et al.
2024; Assis et al. 2025) by comparing the performance
of traditional and machine learning algorithms under
comparable problem scenarios in terms of time
complexity.

2 Various Time Complexities

In the process of analyzing the efficiency of

algorithms, a mathematical notation namely “Big Oh
notation” is used to analyze the performance and
complexity of algorithms. This pertains to the
evaluation of an algorithm's maximum performance
level, specifically in terms of its behavior in the most
unfavorable scenario. The analysis also considers the
asymptotic behavior of the algorithm, which pertains
to its performance as the input size approaches
infinity. The time complexities of the algorithms
describe how their execution time scales with input
size. Big Oh Notations include constant (O (1)), linear
(O (n)), quadratic (O (n2)), and logarithmic (O (log
n)) complexities, each representing a different rate of
growth, as shown in Figure 1.

Figure 1. Depiction of Various Time
Complexities

2.1 Determinants of efficiency in Traditional
Algorithms and ML algorithms

A fundamental distinction exists between the
time complexity of traditional and machine learning
(ML) algorithms. The computational operations of a

traditional algorithm are usually expressed as a

function of the magnitude of the input for its temporal
efficiency. Quick sort and merge sort are usually
followed by sorting algorithms that have average time
complexity of O(n log n). This implies that they are
roughly going to utilize the same amount of
computational time in proportion to the logarithm of
their input size. Temporal efficiency of a machine
learning algorithm is often measured as the number of
training instances needed to build the proficient model,
and the number of attributes that each of that training
instance has (Shrestha & Mahmood, 2019; Huang et
al., 2020; Zeguendry et al., 2023, Dahiya, 2023). The
complexity of the model, the size of the dataset, and the
optimization technique affords training a machine
learning algorithm to take a great deal of time and
undergo a fair amount of variability by virtue of this.
We include classical complexity classes to highlight the
difference between traditional algorithms and machine
learning models. Unlike traditional algorithms, ML
models don’t follow a single, fixed time complexity.
Their computation depends on different stages like
training and inference which means we need to look at
time complexity in a more flexible way when analyzing
them.

The analytical approximation of time
complexity of a machine learning algorithm
traditionally involves a visual examination of what the
computational expenditure is as a mathematical
expression of the size of the input data, which is
usually expressed as the number of training instances
and the number of attributes per instance. More
specifically, it can be described in terms of the
computational expenditure in terms of the number of
floating point operations (FLOPS) needed to train the
model or in terms of the number of iterative required
by the optimization algorithm. There are some very
simple machine learning algorithms that in principle
are determined by how long they take to run: linear
regression. In particular, this algorithm has been
estimated to run in time O (nd?) with ‘n’ being the
number of training instances and ‘d’ being the number
of features. Time complexity in deep learning model
can be estimated by analyzing number of layers, size of
each layer and count of parameters in the model. One
possible estimation of time complexity for a
convolutional neural network (CNN) is O (k”2nd"2)
where k is convolutional kernel size, ‘n’ is the number
of training instances and ‘d’ is the number of features.
It is more advantageous empirically to evaluate the run
time of a machine learning algorithm on a particular
dataset using a profiler or a benchmarking tool rather
than based on the algorithm’s theoretical running time.
The reason for that is that the theoretical time
complexity might not match the actual algorithm’s
performance in real-time setting.

3. Computational
Efficiency

Consider the variations in running time in a
loop for n=100 and n=1000, where n is the input size.
The computational time of a loop is typically
proportional to its number of cycles. Therefore, when
the loop executes n times for n = 100, it takes less time
than when it executes n times for n = 1000, which
entails ten times more iterations. For n = 100, the total
time will be 0.0001 seconds, while for n = 1000, it is
0.0010 seconds. This time variation is insignificant.
This example provides a basic comparison to help
understand how linear scaling appears in both
traditional algorithms and machine learning
algorithms. For the purpose of iterating over training
examples or performing gradient updates during
training, machine learning algorithms frequently
employ loops. The temporal complexity of said
operations is commonly in direct proportion to the
number of training instances. As a result, generally,
duration of execution for the algorithm will increase if
we speculate that we run the algorithm with sample
size of n = 1000 training examples rather than n = 100.
This emphasizes the need to differentiate machine
learning algorithms from traditional ones because in
this case, size of input dataset impacts not only
execution time but also model performance and
generalization, which are factors that are rarely relevant
to computational procedures. This explains our
emphasis on the need for fundamentally different
evaluation criteria for ML algorithms.

The computational time is subject to change by
algorithm complexity, dimensionality and magnitude of
input data, available resources of hardware and
software at disposal and execution of the algorithm. It
should be noted that the effectiveness of ML models
also relies on underlying infrastructure (computational
resources) in contrast to traditional algorithms, which
are typically evaluated without taking hardware
resources into account. Parallelization techniques is
one way that can be applied to certain machine learning
algorithms to improve its efficiency on multi-core or
distributed systems. This will be useful to get better
understanding of the link between priori (theoretical)
and posteriori algorithm analysis. It indicates how
different system configurations can affect an
algorithm's performance, which is not usually the case
with traditional algorithms.

When working with big datasets or complex
models, the computational complexity and scalability
of the machine learning algorithm to be used have to be
considered. This forms the basis for the present
research work where we state that the machine learning
models must be evaluated in terms of how they scale
under increasing computational demands rather than
just their algorithmic structure (e.g., CNN or KNN).

Complexity and Algorithm’s

Table 1.0 Efficiency Analysis of Traditional Algorithms and ML Algorithms

Traditional Algorithm

Machine Learning Algorithm

Problem
Definition

Sorting an Array with Quick Sort

Classifying Data with a Decision Tree

Efficiency
Analysis
Methodology

We were given an array of integers
which we wanted to sort. A
traditional sorting algorithm
namely “Quick Sort” can be used.
Its time complexity is always
measured in terms of the number of
comparisons and swaps required to
sort an array which ultimately
determines the Quick Sorts
efficiency. Using Quick Sort we
can never achieve an optimal time
complexity but the worst-case time
complexity of the Quick Sort is
O(n?) where ’n’ would be the
number of elements in the array.
The analysis here is of the
straightforward type, mostly based
on the input size and the needed
operations (comparing and
swapping) that are involved in the
sorting process.

In case of us being given a dataset of labelled instances,
we want to classify new unseen data points. This can be
used as a machine learning algorithm called ‘decision
tree classifier.” This means the efficiency of this
algorithm has to do with the time complexity of
constructing your decision tree but also just how well the
model generalises to new, unseen data. The efficiency
analysis is made somewhat different. The complexity of
building the decision tree is influenced by the depth of it
and the dataset size because it can be very different and
depends on the characteristics of a dataset. As for
prediction time, once the decision tree is established,
classifying a new data point is relatively quick, typically
requiring only a traversal of the tree to reach a
classification. With regard to model evaluation, unlike
traditional algorithms, machine learning models require
evaluation based on their accuracy, precision, recall, and
other metrics. This aspect of efficiency analysis
considers the model's performance on unseen data, rather
than just its execution time.

Inference

We can easily calculate and predict
the time complexity for a given
input size. The efficiency analysis
of traditional algorithms focuses on
a clear-cut calculation of operations
based on the input size.

The efficiency analysis of machine learning algorithms
involves a more complex evaluation of both model
training and performance metrics.

This would not be addressed in traditional
time-complexity analysis of algorithms. In these cases,
the optimization of algorithm implementation, the use
of parallelization or distributed computing, e.g.
involving specialized hardware such as Graphical
Processing Unit (GPU), Tensor Processing Unit (TPU)
etc. may be required. Graphical Processing Units can
simultaneously execute tasks on intricate problems
partitioned into discrete tasks, while Tensor Processing
Units were designed specifically for neural network
workloads and can process each task at faster speed
than GPUs and require lesser resources. TPUs at
Google are created to speed up machine learning tasks.
With the advantage of Google’s extensive experience
and guidance in the field of machine learning, Tensor
Processing Units were developed.

3.1 Comparing Efficiency Analysis of Traditional
Algorithms and ML Algorithms

Figure 1 shows the difference between
traditional algorithms and machine learning algorithms.
The machine learning algorithm is responsible for
recognizing patterns in data and then making
predictions about new data in a manner that is
analogous to the previous one. It is helpful in enabling
computers to understand without being obviously
programmed with rules that have been established in
the past.

TRADITIONAL
ALGORITHMS

MACHINE LEARNING
ALGORITHMS

Extract
knowledge from

Solve specific
problems

data
e~ - oM

TIME COMPLEXITY TIME COMPLEXITY

J

Figure 1 Traditional Algorithms Vs. Machine
Learning Algorithms

To illustrate the differences in efficiency
analysis between traditional algorithms and machine
learning algorithms, we provided an illustration in
Table 1.0. In fact, we have considered two examples:
sorting an array using a standard algorithm and
classifying data using a machine learning algorithms.

We also mathematically represent the
efficiency analysis of a traditional algorithm (Quick
Sort) and a machine learning algorithm (Decision Tree
Classifier).
Traditional Algorithm: Quick Sort

One of the best-known sorting algorithms is
Quick Sort and its average time complexity is usually
given to be O(n*log n), where ‘n’ is the number of
elements in the array. In the case of the worst case

(where the pivot selection is always bad, allowing you
to always select the smallest or largest element), the
time is O(n?).

Machine Learning Algorithm:
Classifier

The time complexity of constructing the
decision tree in the training depends on the number of
splits or nodes that we need; total number of data
points present in the data set; and the depth of the tree.
This can be mathematically expressed as:Trraining =O (d
x m x log n) where: ‘d’ is the maximum depth of the
tree, ‘m’ is the number of features in the dataset and ‘n’
is the data points in the dataset.

Once the decision tree is built during the
prediction phase, the time complexity of classifying a
new data point is relatively low denoted as: Terediction=
O(d). Thus, the time complexity of the prediction is due
to the depth of the decision tree, because each data
point has to be classified by navigating from a root to
leaf node by the algorithm. In addition to assessing a
machine learning model based on time complexity, it is
additionally evaluated by its performance on unseen
data during the model evaluation. The way to quantify
the model’s ability to generalize is with metrics such as
accuracy, precision, recall and F1 score. This is clear
from above mathematical representations that there is
huge difference in the efficiency analysis between the
traditional algorithms and machine learning algorithms.
While a machine learning algorithm can base solution
on the training time and solution quality, a traditional
algorithm considers only execution time.

3.2 Proof of Concept for Varying Time Complexity
for Machine Learning Algorithm

Proof of concept (PoC) is a preliminary
demonstration to verify the feasibility of an idea; which
can also translate to a medical research course stage. It
is used to test core principles in a controlled
environment to demonstrate that in fact, the concept
should have worked effectively in most cases before
full-scale implementation for further investigation
(Zhang et al., 2023). As part of this research work, we
describe the Proof of Concept for our research
objectives as stated in prior sections. The modelling
and the PoC are designed to empirically validate the
theoretical impacts of input size (N) and feature count
(F) in time complexity of certain machine learning
algorithms. This allows us to establish the general
practice on how these factors affect processing time
and then use these considerations to evaluate how
scalable are different algorithms for the computational
need.

Decision Tree

We set up a controlled experimental
environment using benchmark dataset with different
sizes and different numbers of features in order to

demonstrate these effects. Both synthetic and real-
world examples are provided for the same on these
datasets. To show the effect of time complexity, we
chose an algorithm with different theoretical
complexity such as k nearest neighbours (k-NN)
algorithm O(N?), Decision trees O(N log N) and neural
networks O(N * F). In order to help generalize the
results and provide solid proof of the influence of input
size and feature dimensionality across a wide range of
use cases, algorithms with different theoretical
complexities were chosen. Thus, this diversity enables
exploring how different patterns of computation evolve
with size of input and number of dimensions of the
features. Therefore we test each algorithm on datasets
with more and more elements (N) to ascertain its
empirical time complexity relative to the theoretical
prediction. Separately, we vary the feature count (F) by
artificially generating datasets of controlled feature
count keeping the input size fixed. It allows us to
separate and observe the exclusive effect of feature
scaling on algorithm performance. Processing time is
the first and only metric recorded for each experiment.
Graphs of results are presented, illustrating how time
complexity expands as more terms are added to search,
these are compared to empirical curves as against
theoretical expectations. We see that kK-NN’s processing
time grows exponentially with input size (N), in line
with its quadratic time complexity, based on
preliminary findings. On the other hand, Decision
Trees scale more moderately and possess O(N log N)
as its time complexity.

When we focus on feature count (F), it is
evident that, for instance, neural network algorithms
which are highly complex in terms of F, exhibit
significant time increases as F increases. At the same
time, tree-based methods are more robust to F increases
in high dimensional spaces. Results show that both
input size (N) and feature count (F) substantially affect
algorithm runtimes, consistent with theoretical time
complexity predictions. For high dimensional data,
applications of dimensionality reduction techniques
may be needed to ensure that higher sensitivities to F
algorithms are indeed more appropriate for high
dimensional data. On the other hand, algorithms that
are highly sensitive to N might need sampling of data if
they are to be applied to large data sets.

These findings highlight the importance of N
and F, viewing them together, and informing the
selection of a particular algorithm within the machine
learning application in light of a particular data set and
performance needs. Practitioners can enhance
prediction performance and optimize computational
resources by combining both parameters, which is
particularly important in settings with limited resources
or time constraints. Our detailed observations on the
Proof of Concept are presented in Table 2 and in Figure

2. In the following sections (3.2.1 and 3.2.2), we will
demonstrate our claim that the time complexity will
keep varying for a given machine learning algorithm
depending on its input size and feature selection. We
met this objective by executing the time complexity
analysis of the KNN-ERP algorithm, which was
developed in our previous research work (Parthasarathy
& Padmapriya, 2023) to predict degree of ERP
customization.

3.2.1 Input Size (N) and its impact on Time
Complexity

The input size, represented by N, refers to the
total number of ERP projects included in the dataset.
The KNN algorithm must compute the distance
between the new data point (the new ERP project) and
each existing data point in the dataset. The time
complexity for calculating the distance between the
new point and one existing point is O (F), where F is
the number of features. Because the distance
calculation needs to be carried out for all N data points,
the total time complexity for this step is O (NxF). Once
the distances are calculated, the algorithm then sorts
them to identify the K nearest neighbours. Sorting N
distances generally has a time complexity of O (N log
N). However, in practical scenarios where K is much
smaller than N, the dominant term remains O (NxF).
For instance, imagine a scenario where the dataset
contains 1,000 data points (N) and 10 features (F). The
time complexity in this case would be calculated as:

Time Complexity=0 (1000x10) = O (10000)

This demonstrates that the time complexity
increases linearly as the input size N grows, assuming
the number of features remains constant. This linear
scaling suggests that unless optimization or
approximation techniques are used, KNN may become
computationally costly for very large datasets.

3.2.2 Number of Features (F) and its Impact on
Time Complexity

The number of features, denoted as F, is
another crucial factor influencing the time complexity
of the KNN-ERP algorithm. Each feature represents a
characteristic of the ERP projects such as the number
of ARs, PRs, and DRs. The more features included, the
more complex the distance calculations become. When
the number of features increases, while keeping the
number of data points N fixed, the time complexity still
follows the relationship O (NxF). This means that
increasing the number of features leads to a linear
increase in the time required to calculate distances
between data points. For instance, if N is fixed at 1000
moreover F increases to 20, time complexity becomes:

Time Complexity=0 (1000x20) = O (20000)

This implies that the computational effort

raised by the algorithm increases with the

dimensionality of the data. For illustrative purposes, we
will consider the KNN-ERP customization algorithm
done by the first author’s work (Parthasarathy &
Padmapriya, 2023). Table 2 gives illustrative examples

Table 2.0 Hlustrative Examples of Time Complexity
Analysis of KNN- ERP Algorithm

Figure 2. Depiction of Time Complexity
Variation in KNN-ERP Algorithm

As shown in Figure 2, the left chart shows
a high-level detail of the factors that determine the
time complexity in the KNN-ERP algorithm, i.e.
input size and number of features. In the first
figure, we can see that the relationship between the
time complexity and the input size is highly linear.
The characteristic of the KNN algorithm is that
computation time increases linearly with the
number of data points, and therefore KNN is less
efficient as the number of data points increases.
Figure 2’s right chart indicates the features that
impacts time complexity. It is observed that
efficiency of the KNN-ERP customization
algorithm depends on both the size of the dataset
and the dimensionality of the features (Ray, 2021).
KNN is a simple and effective algorithm for low-
dimensional datasets that are small but is non-
scalable.

3.3 Mathematical Analysis of Time Complexity
Variation in k-Nearest Neighbors (KNN)
Algorithm

To generalize the above illustration
showcasing the varying time complexity for
machine learning algorithms namely KNN ERP
customization algorithm, we now present below
the mathematical representation and proof of
concept for the same.
Time Complexity Analysis:
Step 1: Compute Distance
Distance Calculation: For each query point, the
distance to each training point needs to be
calculated. If we denote the number of training
points by ‘n’ and the number of features by ‘d’,
the distance calculation involves ‘d’ operations

(typically O (d) for Euclidean distance).
Total Time for Distance Calculation: For each of the

Number | Number . .
Time Resulting
Scenario of Data | of Complexity | Time
Points Features CalcSIatioz Complexity
(N) (F)
1000 |10 0 O (10000)
(1000x10)
Input
Size
2000 |10 0 O (20000
(2000%10)
1000 |20 © O (20000)
(1000%20)
Number
of
Features
1000 15 © O (15000)
(1000%15)
of time complexity analysis of KNN-ERP

customization algorithm. The variation of the time
complexity of the KNN-ERP algorithm with input size

and number of features is depicted in Figure 2.

‘m’ query points, the time to compute distances to all
‘n’ training points is O (n X d). Thus, for ‘m’ query
points, this becomes O (m X n X d).

Step 2: Sort Distances

Sorting: Sorting ‘n’ distances for each query point has
a time complexity of O (n logn).
Total Time for Sorting: For ‘m’ query points, this
becomes O (m X n logn).
Step 3: Vote/Regression:
Voting or Computing Statistics: Finding the ‘k’
Nearest Neighbour involves selecting the first ‘k’
points from the sorted list, which takes O (k) time.
Then, voting among the ‘k’ neighbours or computing a
statistic typically takes O (k) time.
Total Time for Voting/Regression: For ‘m’ query
points, this becomes O (m X k).
Combined Time Complexity: Combining the time
complexities from all steps, we get: O (m X n X d) +
O (m X nlogn) + O (m X k)
Influence of Input Size and Feature Selection:
Input Size (n and m): The total training points are
denoted as ‘n’ and the total query points ‘m’ directly
affect the time complexity. Larger values of ‘n’ and ‘m’
increase the overall time complexity significantly.
Feature Selection (d): The distance computation step
has an influence on the number of features ‘d’.
Increasing the number of features reduces the speed of
each distance calculation.
Simplified Analysis: In this case, the term O (m x n x
d) will usually predominate since ‘d’ is generally
smaller than nlogn.
The time complexity of the KNN algorithm is
dependent on the input size (training and query points
and number of features) and hence, this leads to the
time complexity of KNN algorithm.
Mathematical Representation: Thus depending on the
number of training points, number of query points and
number of dimensions in the feature space, time
complexity of the KNN algorithm is as follows:
T (n,m,d) = O (m*n*d) + O (m*nlogn) + O (M*k)
From this formula, it is clear that the time complexity
depends on the input size and the features to be
selected.
3.3.1 Description

Below we provide a detailed explanation of the
mathematical proof of time complexity variation in the
K-Nearest Neighbors (KNN) algorithm.
Distance Calculation and Input Size: KNN algorithm
is based on distance implementation between the query
register point and all of the training points. Supposing
there is a finite set of training points possessed by ‘n’
and a complementary set of query points of ‘m’. Thus,
for every query point, it was required to calculate
distance to every training point which should take O(d)
operation for every distance calculation where ‘d’ is the
features. Therefore, the time taken for processing
distance of all the ‘m’ query points is O (m*n*d). It is
clear that more time is required for each distance
computation as the number of training points (n) and
query points (m) get larger and by the number of

features (d).
Sorting Distances: The next step is to first compute
the distances and then sort these distances to get the K
nearest neighbours of each query point. The time taken
to sort the 'n' distances, is O (nlogn). The total
complexity of sorting for this is O (m x n x logn) for
'm' query points. This step is important in order to
identify the Nearest Neighbour, which becomes costly
with the increase in size of the training points. Another
complexity level of logn is introduced by the
logarithmic factor, though this is less influential for
large ‘n’ than the linear terms, it greatly affects the total
time complexity for large datasets.
Voting/Regression and Combined Complexity: The
last process has to do with either voting amongst the k-
nearest Neighbour for classification or computing the
regression statistic. The complexity of each step is O(k)
when it is done for one query point and hence becomes
O(m X k) for ‘m’ number of the query points. When all
these mentioned steps are summed up, the total time
complexity of the KNN algorithm becomes O (m X n
X d) + O (m X n logn) + m X k). This reinforces the
fact that time taken to process k-NN increases with the
growth in the number of training and query points and
features. The primary term, usually O (m X n X d),
indicates the great influence of feature selection on the
execution time of the algorithm because the number of
features boosts the cost of computations. Hence, the
time complexity of KNN depends on the input size and
features from nearest neighbours making its practical
use in large and high-dimensional data difficult.
4. Discussion

The landscape of computational algorithms is
vast, encompassing both traditional and machine
learning algorithms, each with unique characteristics
and performance implications. Understanding the time
complexity of these algorithms is crucial for effective
implementation, optimization, and achieving the
desired outcomes in various applications. Traditional
algorithms, often characterized by deterministic
processes, have well-defined steps that lead to a
solution. Their time complexity is usually assessed
based on input size and can be classified into different
complexity categories, such as O (1), O (log n), O (n),
O (n log n), O (n?), and others. For example, binary
search has a time complexity of O (log n), making it
effective for searching within sorted arrays. Similarly,
sorting algorithms like quicksort and merge sort
typically have an average time complexity of O (n log
n), striking balance between performance efficiency
and implementation complexity. Traditional algorithms
tend to excel in situations where the problem is well-
defined and the input size is manageable. However, as
input size grows, the limitations of traditional
algorithms become apparent, especially for those with
polynomial or exponential time complexities.

Machine learning algorithms bring a different
aspect to time complexity analysis. These algorithms
learn patterns from data and use the learned model to
make predictions or decisions. The time complexity of
machine learning algorithms can be broken down into
two phases: training and inference. In the training
phase, the algorithm processes input data to uncover
underlying patterns. For instance, the training
complexity of a k-Nearest Neighbors (k-NN) algorithm
is O (m x n x d) + O (m x n log n), where ‘m’ is the
number of query points, ‘n’ is the number of training
points, and ‘d’ is the number of features. Similarly,
training a Support Vector Machine (SVM) involves
solving a quadratic optimization problem, resulting in a
time complexity of O (n2 x d) in its primal form. The
training phase is often computationally demanding,
especially with large datasets and high-dimensional
feature spaces. However, since this phase is typically
conducted offline, there is room for using extensive
computational resources and time to optimize the
model.

In contrast, the inference phase, where the
trained model is utilized to make predictions, typically
has a lower time complexity. For k-NN, inference
involves computing distances to the training points,
leading to a complexity of O (n X d) per query point.
For a trained neural network, inference is often O (d),
as it involves a fixed number of operations determined
by the network architecture. The primary distinction
between traditional and machine learning algorithms
lies in their approach to problem-solving and the
resulting time complexities. Traditional algorithms,
with their deterministic nature, offer predictable
performance but struggle with scalability and
adaptability to new data. Machine learning algorithms,
on the other hand, excel in adaptability and handling
complex, high-dimensional data but come at the cost of
high training time complexities. In practical
applications, the choice between traditional and
machine learning algorithms often hinges on the
problem requirements. For problems with well-defined
rules and manageable input sizes, traditional algorithms
are preferable due to their predictable performance.
Conversely, for complex problems involving large
datasets and requiring adaptive learning, machine
learning algorithms are more suitable despite their
higher training complexity. The interplay between input
size, feature dimensionality, and time complexity
underscores the importance of understanding the
computational demands of both traditional and machine
learning algorithms. This understanding enables
practitioners to make informed decisions, optimizing
algorithm selection and implementation for efficient
and effective problem-solving.

4.1 Contributions to Research and Practice
In this research work, we introduce a

systematic comparison of time complexity between
traditional algorithms and machine learning (ML)
algorithms, establishing a technical novelty in how
algorithmic efficiency is evaluated in data-driven
contexts. Unlike conventional studies that assess
algorithms in isolation, this research analyzes time
complexity across both traditional and ML paradigms,
leveraging empirical and theoretical insights. One key
contribution is the proof of concept for studying the
variation in time complexities of traditional and ML
algorithms. Through this, we highlight the scalability
limitations and performance bottlenecks specific to
each paradigm under varying data conditions.

Another contribution is the mathematical
analysis of time complexity variation in ML
algorithms, a focused analysis of how ML algorithms'
time complexity shifts under different feature and
dataset dimensions. By modeling time complexity
using mathematical formulas, this section offers a
precise, quantitative understanding of how ML models
respond to increased data dimensionality and
complexity. This analysis is especially novel, as it
underscores the role of both feature engineering and
data preprocessing in computational efficiency, areas
often under-explored in ML research. The insights from
this study hold practical value for practitioners who
must navigate trade-offs between computational
resources and accuracy. For developers and data
scientists, the findings serve as a guide to choose
algorithms that meet both performance and scalability
demands, particularly in environments with high data
variability.

This research work encourages the adoption of
hybrid approaches, where traditional algorithms could
be combined with ML techniques to optimize
performance. For instance, preprocessing tasks with
traditional algorithms might reduce dimensionality,
making ML algorithms more efficient when processing
large datasets. These insights support practical
applications in areas such as real-time data processing,
Al-driven analytics, and high-performance computing,
where computational efficiency is crucial. By bridging
theoretical insights with practical analysis, our study
offers a comprehensive approach for evaluating
algorithm efficiency, guiding both academic research
and real-world implementations across diverse data-
driven fields.

5. Conclusions

The main conclusions are as follows. The
underlying principle of efficiency analysis of the
machine learning algorithms must be reset. The time
complexity of such algorithms depends on feature
selection, training dataset volume, and input size. The
time complexity of solving the same problem may vary
depending on the machine learning algorithm used,
such as linear regression or decision trees. In addition,

the training dataset may be added in real time, making
a priori algorithm analysis unhelpful. In such cases, an
empirical (posteriori) algorithm analysis must always
be used. Given these facts, representing the time
complexity of such algorithms as a function of input
size makes little sense.

5.1 Future research

Future research shall explore a broader range of real-
world applications to validate and refine the observed
trade-offs in diverse computational environments.
Investigations could focus on hybrid models that
combine traditional algorithmic logic with machine
learning components to optimize both accuracy and
efficiency. Additionally, extending the analysis to
include space complexity, energy consumption, and
scalability on edge devices or cloud platforms would
provide a more holistic view. Exploring the role of
explainability and robustness in selecting between
algorithmic and ML-based approaches, especially in
safety-critical domains, also presents a valuable
direction for further inquiry.

Data Availability Statement

The data that support the findings of this study are
available from the corresponding author upon
reasonable request.

Author Contributions

Conceptualization, methodology, and analysis:
Sudhaman Parthasarathy; Writing—original draft
preparation: Sudhaman Parthasarathy;
S. Sivagurunathan: Validation and Writing [review
and editing]: All authors read and approved the final
manuscript.

Conflict of interest

The authors have no conflicts of interest to declare that
are relevant to the content of this article.

References

Ali, Y. A., Awwad, E. M., Al-Razgan, M., & Maarouf,
A. (2023). Hyperparameter search for machine learning
algorithms for optimizing the computational
complexity. Processes, 11(2), 349.

Assis, A., Dantas, J., & Andrade, E. (2025). The
performance-interpretability trade-off: a comparative
study of machine learning models. Journal of Reliable
Intelligent Environments, 11(1), 1.

Baki, A. (1992). Al Khwarizmi's Contributions to the
Science of Mathematics: Al Kitab Al Jabr Wall
Mugabalah. Journal of Islamic Academy of Sciences,
5(3), 225-228.

Berry, M. W., Mohamed, A., & Yap, B. W. (Eds.).
(2019). Supervised and unsupervised learning for data
science. Springer Nature.

Binson, V. A., Thomas, S., Subramoniam, M., Arun, J.,
Naveen, S., & Madhu, S. (2024). A review of machine

learning algorithms for biomedical applications. Annals
of Biomedical Engineering, 52(5), 1159-1183.

Dahiya, S. (2023). Scalable Machine Learning
Algorithms: Techniques, Challenges, and Future
Directions. MZ Computing Journal, 4(1).

Huang, L., Yin, Y., Fu, Z., Zhang, S., Deng, H., & Liu,
D. (2020). LoAdaBoost: Loss-based AdaBoost
federated machine learning with reduced computational
complexity on IID and non-lID intensive care data.
Plos one, 15(4), e0230706.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., &
Galstyan, A. (2021). A survey on bias and fairness in
machine learning. ACM Computing Surveys (CSUR),
54(6), 1-35.

Nguyen, T. T., Nguyen, N. D., & Nahavandi, S. (2020).
Deep reinforcement learning for multiagent systems: A
review of challenges, solutions, and applications. IEEE
transactions on cybernetics, 50(9), 3826-3839.

Parthasarathy, S., & Padmapriya, S. T. (2023).
Understanding algorithm bias in artificial intelligence-
enabled ERP software customization. Journal of Ethics
in Entrepreneurship and Technology, 3(2), 79-93.

Ray, S. (2021). An analysis of computational
complexity and accuracy of two supervised machine
learning algorithms—K-nearest neighbor and support
vector machine. In Data Management, Analytics and
Innovation: Proceedings of ICDMAI 2020, Volume 1
(pp. 335-347). Springer Singapore.

Shrestha, A., & Mahmood, A. (2019). Review of deep
learning algorithms and architectures. IEEE access, 7,
53040-53065.

Zeguendry, A., lJarir, Z., & Quafafou, M. (2023).
Quantum machine learning: A review and case studies.
Entropy, 25(2), 287.

Zhang, Z., Chen, J., & Zhao, W. (2023). Multi-AGV
route planning in automated warehouse system based
on shortest-time Q-learning algorithm. Asian Journal of
Control.

Zheng, X., Jia, J., Guo, S., Chen, J., Sun, L., Xiong, Y.,
& Xu, W. (2021). Full parameter time complexity
(FPTC): A method to evaluate the running time of
machine learning classifiers for land use/land cover
classification. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 14,
2222-2235.

Zhou, Z. H. (2021). Machine learning. Springer Nature.

